Abstract
Some patients with COVID-19 show changes in signs and symptoms, such as temperature and oxygen saturation days before being positively tested for SARS-CoV-2, while others remain asymptomatic. It is important to identify these subgroups and to understand what biological and clinical predictors are related to these subgroups. This information will provide insights into how the immune system may respond differently to infection and can further be used to identify infected individuals. We propose a flexible nonparametric mixed-effects mixture model that identifies risk factors and classifies patients with biological changes. We model the latent probability of biological changes using a logistic regression model and trajectories in the latent groups using smoothing splines. We developed an EM algorithm to maximize the penalized likelihood for estimating all parameters and mean functions. We evaluate our methods by simulations and apply the proposed model to investigate changes in temperature in a cohort of COVID-19-infected hemodialysis patients.
Funding Statement
This research is partially supported by NIH grants R01-DK130067, R01-HL161303, R01-DK117208, and NSF grant DMS-2053423.
Acknowledgments
We would like to thank the Editor and two anonymous reviewers for their insightful comments that significantly improved the manuscript.
Citation
Xiaoran Ma. Wensheng Guo. Mengyang Gu. Len Usvyat. Peter Kotanko. Yuedong Wang. "A nonparametric mixed-effects mixture model for patterns of clinical measurements associated with COVID-19." Ann. Appl. Stat. 18 (3) 2080 - 2095, September 2024. https://doi.org/10.1214/23-AOAS1871
Information