March 2024 Learning healthcare delivery network with longitudinal electronic health records data
Jiehuan Sun, Katherine P. Liao, Tianxi Cai
Author Affiliations +
Ann. Appl. Stat. 18(1): 882-898 (March 2024). DOI: 10.1214/23-AOAS1818


Knowledge networks, such as the healthcare delivery network (HDN), describing relationships among different medical encounters, are useful summaries of state-of-art medical knowledge. The increasing availability of longitudinal electronic health records (EHR) data promises a rich data source for learning HDN. Most existing methods for inferring knowledge networks are based on cooccurrence patterns that do not account for temporal effects or patient-level heterogeneity. In this article, building upon the multivariate Hawkes process (mvHP), we propose a flexible covariate-adjusted random effects (CARE) mvHP modeling strategy for HDN construction. Our model allows for patient-specific time-varying background intensity functions via random effects, which can also adjust for effects of important covariates. We adopt a penalized approach to select fixed effects, yielding a sparse network structure, and to remove unnecessary random effects from the model. Through extensive simulation studies, we show that our proposed method performs well in recovering the network structure and that it is essential to account for patient heterogeneities. We further illustrate our CARE mvHP method in an EHR study of type 2 diabetes patients to learn an HDN for these patients and demonstrate that our results are consistent with current clinical practice in healthcare systems.


Download Citation

Jiehuan Sun. Katherine P. Liao. Tianxi Cai. "Learning healthcare delivery network with longitudinal electronic health records data." Ann. Appl. Stat. 18 (1) 882 - 898, March 2024.


Received: 1 November 2022; Revised: 1 May 2023; Published: March 2024
First available in Project Euclid: 31 January 2024

Digital Object Identifier: 10.1214/23-AOAS1818

Keywords: electronic health records , group lasso , Hawkes process , healthcare delivery network , random effects selection

Rights: Copyright © 2024 Institute of Mathematical Statistics


This article is only available to subscribers.
It is not available for individual sale.

Vol.18 • No. 1 • March 2024
Back to Top