Abstract
In observational surveys, post-stratification is used to reduce bias resulting from differences between the survey population and the population under investigation. However, this can lead to inflated post-stratification weights and, therefore, appropriate methods are required to obtain less variable estimates. Proposed methods include collapsing post-strata, trimming post-stratification weights, generalized regression estimators (GREG) and weight smoothing models, the latter defined by random-effects models that induce shrinkage across post-stratum means. Here, we first describe the weight-smoothing model for prevalence estimation from binary survey outcomes in observational surveys. Second, we propose an extension of this method for trend estimation. And, third, a method is provided such that the GREG can be used for prevalence and trend estimation for observational surveys. Variance estimates of all methods are described. A simulation study is performed to compare the proposed methods with other established methods. The performance of the nonparametric GREG is consistent over all simulation conditions and therefore serves as a valuable solution for prevalence and trend estimation from observational surveys. The method is applied to the estimation of the prevalence and incidence trend of influenza-like illness using the 2010/2011 Great Influenza Survey in Flanders, Belgium.
Citation
Yannick Vandendijck. Christel Faes. Niel Hens. "Prevalence and trend estimation from observational data with highly variable post-stratification weights." Ann. Appl. Stat. 10 (1) 94 - 117, March 2016. https://doi.org/10.1214/15-AOAS874
Information