Abstract
We study the nonlinear wave equation (NLW) on the two-dimensional torus with Gaussian random initial data on , , distributed according to the base Gaussian free field μ associated with the invariant Gibbs measure studied by Thomann and the first author (2020). In particular, we investigate the approximation property of the corresponding solution by smooth (random) solutions. Our main results in this paper are two-fold. (i) We show that the solution map for the renormalized cubic NLW defined on the Gaussian free field μ is the unique extension of the solution map defined for smoothed Gaussian initial data obtained by mollification, independent of mollification kernels. (ii) We also show that there is a regularization of the Gaussian initial data so that the corresponding smooth solutions almost surely have no limit in the natural topology. This second result in particular states that one can not use arbitrary smooth approximation for the renormalized cubic NLW dynamics.
As a preliminary step for proving (ii), we establish a (deterministic) norm inflation result at general initial data for the (unrenormalized) cubic NLW on and in negative Sobolev spaces, extending the norm inflation result by Christ, Colliander, and Tao (2003).
On considère l’équation des ondes (NLW) posée sur le tore de dimension deux avec une condition initiale aléatoire dans , , distribuée selon le champ libre gaussien μ associé à la mesure invariante de Gibbs étudiée par Thomann et le premier auteur (2020). En particulier, nous essayons de comprendre si on peut approximer les solutions avec condition initiale typique par des solutions lisses aléatoires. Nous obtenons deux résultats complémentaires : (i) Nous démontrons que le flot du NLW cubique renormalisé défini sur le champ libre gaussien est l’unique extension du flot défini sur des données gaussiennes régularisées par convolution (et cela indépendamment du noyau de convolution). (ii) Nous démontrons également qu’il existe une régularisation des données initiales gaussiennes telle que les solutions régulières correspondantes n’ont pas de limite presque sûrement dans la topologie naturelle. Par conséquent, nous ne pouvons pas utiliser une approximation arbitraire pour construire la dynamique du NLW cubique renormalisé. Une étape préliminaire dans la preuve de (ii) consiste en une élaboration significative sur un résultat d’inflation de norme dû à Christ, Colliander, et Tao (2003).
Funding Statement
T.O. was supported by the European Research Council (grant no. 637995 “ProbDynDispEq” and grant no. 864138 “SingStochDispDyn”). M.O. was supported by JSPS KAKENHI Grant numbers JP16K17624 and JP20K14342. N.T. was supported by the ANR grant ODA (ANR-18-CE40-0020-01).
Acknowledgements
T.O. would like to thank the Centre de Recherches Mathématiques, Montréal, Canada, for its hospitality. M.O. would like to thank the School of Mathematics at the University of Edinburgh for its hospitality during his visit in 2019, when this manuscript was prepared. Lastly, the authors would like to thank the anonymous referees for their helpful comments that have improved the presentation of the paper.
Citation
Tadahiro Oh. Mamoru Okamoto. Nikolay Tzvetkov. "Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation." Ann. Inst. H. Poincaré Probab. Statist. 60 (3) 1684 - 1728, August 2024. https://doi.org/10.1214/23-AIHP1380
Information