Abstract
In this article we study a simple random walk on a decorated Galton–Watson tree, obtained from a Galton–Watson tree by replacing each vertex of degree n with an independent copy of a graph and gluing the inserted graphs along the tree structure. We assume that there exist constants , such that the diameter, effective resistance across and volume of respectively grow like , , as . We also assume that the underlying Galton–Watson tree is critical with offspring tails decaying like as for some constant c and some . We establish the fractal dimension, spectral dimension, walk dimension and simple random walk displacement exponent for the resulting metric space as functions of α, d, R and v, along with bounds on the fluctuations of these quantities.
Dans cet article, nous étudions une marche aléatoire simple sur un arbre de Galton–Watson décoré, obtenu à partir d’un arbre de Galton–Watson en remplaçant chaque sommet de degré n par une copie indépendante d’un graphe et en collant les graphes insérés le long de la structure de l’arbre. Nous supposons qu’il existe des constantes , telles que le diamètre, la résistance effective et le volume de croissent respectivement comme , , lorsque . Nous supposons également que l’arbre de Galton–Watson sous-jacent est critique avec des queues de la loi de reproduction qui décroit comme lorsque , pour une certaine constante c et . Nous établissons la dimension fractale, la dimension spectrale, la dimension de la marche et l’exposant de déplacement de la marche aléatoire simple pour l’espace métrique obtenu en fonction de α, d, R et v, ainsi que des bornes sur les fluctuations de ces quantités.
Funding Statement
The author was supported by a JSPS short term predoctoral fellowship, EPSRC grant number EP/N509796/1, and ERC consolidator grant 101001124 UniversalMap.
Acknowledgments
I would like to thank David Croydon for helpful discussions and Takashi Kumagai for hosting me at RIMS in 2019, during which time this work was initiated. I would also like to thank Delphin Sénizergues for interesting conversations about a concurrent project and for his comments on the proof of Proposition 3.5, and Nicolas Curien for putting us in touch and for helpful questions. I would also like to thank the anonymous referee for a very thorough reading and detailed comments which greatly improved the presentation of the paper.
Citation
Eleanor Archer. "Random walks on decorated Galton–Watson trees." Ann. Inst. H. Poincaré Probab. Statist. 60 (3) 1849 - 1904, August 2024. https://doi.org/10.1214/23-AIHP1386
Information