Abstract
We prove existence of all moments of the multiplicative coalescent at all times. We obtain as byproducts a number of related results which could be of general interest. In particular, we show the finiteness of the second moment of the norm for any extremal eternal version of multiplicative coalescent. Our techniques are in part inspired by percolation, and in part are based on tools from stochastic analysis, notably the semi-martingale and the excursion theory.
Nous démontrons l’existence de tous les moments de la coalescence multiplicative en tout temps. Nous obtenons ainsi un certain nombre de résultats additionnels qui pourraient être d’intérêt général. En particulier, nous montrons la finitude du second moment de la norme pour toute version extrémale éternelle de la coalescence multiplicative. Nos techniques sont en partie inspirées de la percolation, et en partie fondées sur des outils de l’analyse stochastique, notamment des semi-martingales et la théorie des excursions.
Funding Statement
The first author was partly supported by a visiting professor position from the University of Strasbourg and partly supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1283/2 2021 – 317210226.
Acknowledgments
The research presented in this paper was mostly conducted while the first author was employed at Hamburg University.
Citation
Vitalii Konarovskyi. Vlada Limic. "On moments of multiplicative coalescents." Ann. Inst. H. Poincaré Probab. Statist. 60 (3) 2025 - 2045, August 2024. https://doi.org/10.1214/23-AIHP1391
Information