Abstract
We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional finite lattice . The particles can be created/annihilated at the boundaries with given rates. These rates are functions of time and are independent of the jump rates in the bulk (cf. Comm. Math. Phys. 310 (2012) 1–24). The boundary dynamics is modified by a factor with . We study the hydrodynamic limit for the particle density profile under the hyperbolic space-time scale. The macroscopic equation is given by (inviscid) Burgers equation with boundary conditions which are characterized by the boundary entropy (C. R. Acad. Sci. Paris 322 (1996) 729–734). A grading scheme is developed to control the formulation of boundary layers on the microscopic level.
Nous considérons le processus d’exclusion simple asymétrique (ASEP) sur le réseau fini unidimensionnel . Les particules peuvent être créées/annihilées sur les points de frontière avec des taux qui sont des fonctions du temps et sont indépendants des taux de saut à l’intérieur du système (cf. Comm. Math. Phys. 310 (2012) 1–24). La dynamique des bords est modifiée d’un facteur avec . Nous étudions la limite hydrodynamique du profil de densité des particules sous l’échelle espace-temps hyperbolique. L’équation macroscopique est donnée par l’équation (non visqueuse) de Burgers avec des conditions aux limites caractérisées par l’entropie du processus sur les points de frontière (C. R. Acad. Sci. Paris 322 (1996) 729–734). Un schéma adapté est développé pour contrôler la formulation des couches limites au niveau microscopique.
Acknowledgements
The author would like to thank Stefano Olla for stimulating discussions and remarks.
Citation
Lu Xu. "Hydrodynamic limit for asymmetric simple exclusion with accelerated boundaries." Ann. Inst. H. Poincaré Probab. Statist. 60 (3) 1543 - 1569, August 2024. https://doi.org/10.1214/23-AIHP1384
Information