August 2024 Backbone scaling limits for random walks on random critical trees
Gérard Ben Arous, Manuel Cabezas, Alexander Fribergh
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 60(3): 1814-1848 (August 2024). DOI: 10.1214/23-AIHP1394

Abstract

We prove the existence of scaling limits for the projection on the backbone of the random walks on the Incipient Infinite Cluster and the Invasion Percolation Cluster on a regular tree. We treat these projected random walks as Randomly trapped random walks (as defined in (Ann. Probab. 43 (2015) 2405–2457)) and thus describe these scaling limits as spatially subordinated Brownian motions.

Nous prouvons l’existence de la limite d’échelle pour la projection sur la lignée infinie de la marche aléatoire sur l’amas de percolation critique infini conditionné (IIC). Nous considérons aussi le cas de l’amas de percolation d’invasion d’un arbre régulier. Nous étudions ces marches projetées comme des marches aléatoires piégées de manière aléatoire (comme définies dans (Ann. Probab. 43 (2015) 2405–2457)). Nous pouvons décrire ces limites d’échelle comme des mouvements Browniens subordonnés spatialement.

Funding Statement

The first author was supported by NSF DMS1209165, BSF 2014019. The second author was supported by Fondecyt fellowship #1201090. The third author was supported by NSERC discovery grant and FRQNT jeune chercheur.

Acknowledgements

We would like to thank Louigi Addario-Berry for his very valuable input simplifying the proof of Lemma 8.1 and David Croydon for his useful answers to questions concerning fine properties of the Brownian motion on the CRT and its local time.

Citation

Download Citation

Gérard Ben Arous. Manuel Cabezas. Alexander Fribergh. "Backbone scaling limits for random walks on random critical trees." Ann. Inst. H. Poincaré Probab. Statist. 60 (3) 1814 - 1848, August 2024. https://doi.org/10.1214/23-AIHP1394

Information

Received: 19 July 2018; Revised: 3 March 2023; Accepted: 7 April 2023; Published: August 2024
First available in Project Euclid: 31 July 2024

Digital Object Identifier: 10.1214/23-AIHP1394

Subjects:
Primary: 200060G52 , 200060K37
Secondary: 200060F17

Keywords: percolation , Random walk

Rights: Copyright © 2024 Association des Publications de l’Institut Henri Poincaré

Vol.60 • No. 3 • August 2024
Back to Top