May 2024 Matsumoto–Yor and Dufresne type theorems for a random walk on positive definite matrices
Jonas Arista, Elia Bisi, Neil O’Connell
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 60(2): 923-945 (May 2024). DOI: 10.1214/22-AIHP1338

Abstract

We establish analogues of the geometric Pitman 2MX theorem of Matsumoto and Yor and of the classical Dufresne identity, for a multiplicative random walk on positive definite matrices with Beta type II distributed increments. The Dufresne type identity provides another example of a stochastic matrix recursion, as considered by Chamayou and Letac (J. Theoret. Probab. 12, 1999), that admits an explicit solution.

Nous établissons des analogues de la version géométrique du théorème 2M-X de Pitman, démontrée par Matsumoto et Yor, et de l’identité de Dufresne classique, pour une marche aléatoire multiplicative sur l’ensemble des matrices définies positives d’incréments distribués selon une loi Bêta II. L’identité de Dufresne proposée fournit un autre exemple de récursion matricielle stochastique, comme l’ont considéré Chamayou et Letac (J. Theoret. Probab. 12, 1999), qui admet une solution explicite.

Funding Statement

Research supported by the European Research Council (grant 669306).

Acknowledgements

The authors thank the anonymous referees for their helpful comments and suggestions, which have led to a much improved version of the paper.

Citation

Download Citation

Jonas Arista. Elia Bisi. Neil O’Connell. "Matsumoto–Yor and Dufresne type theorems for a random walk on positive definite matrices." Ann. Inst. H. Poincaré Probab. Statist. 60 (2) 923 - 945, May 2024. https://doi.org/10.1214/22-AIHP1338

Information

Received: 31 January 2022; Revised: 23 September 2022; Accepted: 27 October 2022; Published: May 2024
First available in Project Euclid: 11 June 2024

Digital Object Identifier: 10.1214/22-AIHP1338

Subjects:
Primary: 60B20 , 60K35 , 82B23
Secondary: 22E30 , 60G10 , 62H10

Keywords: Intertwining relations , Lyapunov exponents , Matrix Dufresne identity , Matrix Matsumoto–Yor theorem , matrix variate distributions , Stochastic matrix recursions and equations , Wishart and Beta distributions

Rights: Copyright © 2024 Association des Publications de l’Institut Henri Poincaré

Vol.60 • No. 2 • May 2024
Back to Top