Abstract
We consider Bernoulli first-passage percolation on the triangular lattice in which sites have 0 and 1 passage times with probability p and , respectively. For each , let be the limit shape in the classical “shape theorem”, and let be the correlation length. We show that as , the rescaled limit shape converges to a Euclidean disk. This improves a result of Chayes et al. [J. Stat. Phys. 45 (1986) 933–951]. The proof relies on the scaling limit of near-critical percolation established by Garban et al. [J. Eur. Math. Soc. 20 (2018) 1195–1268], and uses the construction of the collection of continuum clusters in the scaling limit introduced by Camia et al. [Springer Proceedings in Mathematics & Statistics, 299 (2019) 44–89].
Nous considérons la percolation de premier passage de Bernoulli sur le réseau triangulaire dans lequel les sites ont des temps de passage de 0 et 1 avec une probabilité de p et , respectivement. Pour tout , soit la forme limite donnée par le “théorème de la forme” classique, et soit la longueur de corrélation. Nous montrons que lorsque , la forme limite renormalisée converge vers un disque Euclidien. Ceci améliore un résultat de Chayes et al. [J. Stat. Phys. 45 (1986) 933–951]. La preuve repose sur la limite d’échelle de la percolation presque-critique établie par Garban et al. [J. Eur. Math. Soc. 20 (2018) 1195–1268], et utilise la construction de l’ensemble de clusters dans le continu dans la limite d’échelle introduite par Camia et al. [Springer Proceedings in Mathematics & Statistics, 299 (2019) 44–89].
Funding Statement
The author was supported by the National Key R&D Program of China (No. 2020YFA0712700), the National Natural Science Foundation of China (No. 12288201 and No. 11601505) and the Key Laboratory of Random Complex Structures and Data Science, CAS (No. 2008DP173182).
Acknowledgements
The author is especially grateful to an anonymous referee for 1) pointing out that a preliminary version of the proof of Theorem 1.1 can be simplified, without using the scaling limit of the collection of portions of clusters in a strip, and 2) suggesting us another definition of which makes the proof cleaner. The referee’s suggestions make the paper less technical and much shorter than its preprint version [41]. The author thanks Geoffrey Grimmett for an invitation to the Statistical Laboratory in Cambridge University, and thanks the hospitality of the Laboratory, where this project was initiated.
Citation
Chang-Long Yao. "Convergence of limit shapes for 2D near-critical first-passage percolation." Ann. Inst. H. Poincaré Probab. Statist. 60 (2) 1295 - 1333, May 2024. https://doi.org/10.1214/22-AIHP1349
Information