Abstract
We define a graph process based on a discrete branching process with deletions and mergers, which is inspired by the 4-cycle structure of both the hypercube and the lattice for large d. Individuals have Poisson offspring distribution with mean and certain deletions and mergers occur with probability q; these parameters correspond to the mean number of edges discovered from a given vertex in an exploration of a percolation cluster and to the probability that a non-backtracking path of length four closes a cycle, respectively.
We prove survival and extinction under certain conditions on p and q that heuristically match the known expansions of the critical probabilities for bond percolation on the lattice and the hypercube . These expansions have been rigorously established by Hara and Slade in 1995, and van der Hofstad and Slade in 2006, respectively. We stress that our method does not constitute a branching process proof for the percolation threshold. However, it can provide a conjecture for other high-dimensional, odd-cycle free transitive graphs such as the body-centered cubic lattice.
The analysis of the graph process survival is considerably more challenging than for branching processes in discrete time, due to the interdependence between the descendants of different individuals in the same generation. In fact, it is left open whether the survival probability of is monotone in p or q; we discuss this and some other open problems regarding the new graph process.
Nous définissons un processus de graphes à partir d’un processus de branchement discret avec suppressions et fusions, qui s’inspire de la structure à 4 cycles de l’hypercube et du réseau pour des valeurs élevées de d. Les individus ont une loi de reproduction de Poisson avec une moyenne de et certaines suppressions et fusions se produisent avec une probabilité q ; ces paramètres correspondent respectivement au nombre moyen d’arêtes découvertes à partir d’un sommet donné dans une exploration d’un amas de percolation et à la probabilité qu’un chemin sans retour de longueur quatre ferme un cycle.
Nous prouvons la survie et l’extinction sous certaines conditions sur p et q qui correspondent heuristiquement aux expansions connues des probabilités critiques de percolation des liaisons sur le réseau et l’hypercube . Ces expansions ont été rigoureusement établies par Hara et Slade en 1995, et van der Hofstad et Slade en 2006, respectivement. Nous soulignons que notre méthode ne constitue pas une preuve pour le seuil de percolation qui utiliserait les processus de branchement.
L’analyse de la survie du processus de graphes est considérablement plus difficile que pour les processus de branchement en temps discret, en raison de l’interdépendance entre les descendants de différents individus dans la même génération. Par exemple, le fait que la probabilité de survie de est monotone en p ou q n’est pas clair ; nous discutons de ceci et de quelques autres problèmes ouverts concernant le nouveau processus de graphes.
Funding Statement
LE was partially supported by PAPIIT TA100820. SP is supported by a Royal Society University Research Fellowship. FS was partially supported by the project AI4Research at Uppsala University and by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Acknowledgements
We thank Joel Spencer for suggesting cousin merging in relation to a branching process to recover the coefficients of the critical probability for hypercube percolation. Part of this research was undertaken at the 2018 and 2019 Bellairs Workshops on Probability, held at the Bellairs Research Institute of McGill University.
Citation
Laura Eslava. Sarah Penington. Fiona Skerman. "A branching process with deletions and mergers that matches the threshold for hypercube percolation." Ann. Inst. H. Poincaré Probab. Statist. 60 (2) 1418 - 1457, May 2024. https://doi.org/10.1214/23-AIHP1361
Information