Translator Disclaimer
May 2020 Path-space moderate deviations for a Curie–Weiss model of self-organized criticality
Francesca Collet, Matthias Gorny, Richard C. Kraaij
Ann. Inst. H. Poincaré Probab. Statist. 56(2): 765-781 (May 2020). DOI: 10.1214/19-AIHP981

Abstract

The dynamical Curie–Weiss model of self-organized criticality (SOC) was introduced in (Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017) 658–678) and it is derived from the classical generalized Curie–Weiss by imposing a microscopic Markovian evolution having the distribution of the Curie–Weiss model of SOC (Ann. Probab. 44 (2016) 444–478) as unique invariant measure. In the case of Gaussian single-spin distribution, we analyze the dynamics of moderate fluctuations for the magnetization. We obtain a path-space moderate deviation principle via a general analytic approach based on convergence of non-linear generators and uniqueness of viscosity solutions for associated Hamilton–Jacobi equations. Our result shows that, under a peculiar moderate space-time scaling and without tuning external parameters, the typical behavior of the magnetization is critical.

Le modèle de Curie–Weiss de criticalité auto-organisée dynamique a été construit dans (Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017) 658–678) à partir du modèle de Curie–Weiss généralisé. Il s’agit d’un processus de Markov continu dont l’unique mesure invariante est la loi du modèle de Curie–Weiss de criticalité auto-organisée (Ann. Probab. 44 (2016) 444–478). Dans le cas Gaussien, nous étudions les fluctuations modérées de la magnétisation. Nous obtenons un principe de déviations modérées dans l’espace des chemins en utilisant une approche analytique basée sur la convergence de générateurs non-linéaires et sur l’unicité des solutions de viscosité pour des équations de Hamilton–Jacobi associées. Notre résultat montre que, dans une certaine échelle de temps modérée et sans intervention de paramètres extérieurs, le comportement critique de la magnétisation est critique.

Citation

Download Citation

Francesca Collet. Matthias Gorny. Richard C. Kraaij. "Path-space moderate deviations for a Curie–Weiss model of self-organized criticality." Ann. Inst. H. Poincaré Probab. Statist. 56 (2) 765 - 781, May 2020. https://doi.org/10.1214/19-AIHP981

Information

Received: 26 January 2018; Revised: 23 November 2018; Accepted: 20 March 2019; Published: May 2020
First available in Project Euclid: 16 March 2020

zbMATH: 07199878
MathSciNet: MR4076764
Digital Object Identifier: 10.1214/19-AIHP981

Subjects:
Primary: 60F10, 60J60, 60K35

Rights: Copyright © 2020 Institut Henri Poincaré

JOURNAL ARTICLE
17 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.56 • No. 2 • May 2020
Back to Top