Open Access
2013 Essential $p$-dimension of algebraic groups whose connected component is a torus
Roland Lötscher, Mark MacDonald, Aurel Meyer, Zinovy Reichstein
Algebra Number Theory 7(8): 1817-1840 (2013). DOI: 10.2140/ant.2013.7.1817


Following up on our earlier work and the work of N. Karpenko and A. Merkurjev, we study the essential p-dimension of linear algebraic groups G whose connected component G0 is a torus.


Download Citation

Roland Lötscher. Mark MacDonald. Aurel Meyer. Zinovy Reichstein. "Essential $p$-dimension of algebraic groups whose connected component is a torus." Algebra Number Theory 7 (8) 1817 - 1840, 2013.


Received: 24 February 2012; Revised: 9 September 2012; Accepted: 23 October 2012; Published: 2013
First available in Project Euclid: 20 December 2017

zbMATH: 1288.20061
MathSciNet: MR3134035
Digital Object Identifier: 10.2140/ant.2013.7.1817

Primary: 11E72 , 20G15

Keywords: algebraic torus , Essential dimension , generically free representation , twisted finite group

Rights: Copyright © 2013 Mathematical Sciences Publishers

Vol.7 • No. 8 • 2013
Back to Top