Open Access
2013 Cohomological invariants of algebraic tori
Sam Blinstein, Alexander Merkurjev
Algebra Number Theory 7(7): 1643-1684 (2013). DOI: 10.2140/ant.2013.7.1643

Abstract

Let G be an algebraic group over a field F. As defined by Serre, a cohomological invariant of G of degree n with values in (j) is a functorial-in-K collection of maps of sets TorsG(K)Hn(K,(j)) for all field extensions KF, where TorsG(K) is the set of isomorphism classes of G-torsors over Spec K. We study the group of degree 3 invariants of an algebraic torus with values in (2). In particular, we compute the group Hnr3(F(S),(2)) of unramified cohomology of an algebraic torus S.

Citation

Download Citation

Sam Blinstein. Alexander Merkurjev. "Cohomological invariants of algebraic tori." Algebra Number Theory 7 (7) 1643 - 1684, 2013. https://doi.org/10.2140/ant.2013.7.1643

Information

Received: 23 April 2012; Revised: 8 October 2012; Accepted: 9 November 2012; Published: 2013
First available in Project Euclid: 20 December 2017

zbMATH: 1368.11034
MathSciNet: MR3117503
Digital Object Identifier: 10.2140/ant.2013.7.1643

Subjects:
Primary: 11E72
Secondary: 12G05

Keywords: algebraic tori , cohomological invariants , Galois cohomology

Rights: Copyright © 2013 Mathematical Sciences Publishers

Vol.7 • No. 7 • 2013
MSP
Back to Top