Open Access
Translator Disclaimer
2013 Group actions of prime order on local normal rings
Franz Kiràly, Werner Lütkebohmert
Algebra Number Theory 7(1): 63-74 (2013). DOI: 10.2140/ant.2013.7.63

Abstract

Let B be a Noetherian normal local ring and G Aut(B) be a cyclic group of local automorphisms of prime order. Let A be the subring of G-invariants of B and assume that A is Noetherian. We prove that B is a monogenous A-algebra if and only if the augmentation ideal of B is principal. If in particular B is regular, we prove that A is regular if the augmentation ideal of B is principal.

Citation

Download Citation

Franz Kiràly. Werner Lütkebohmert. "Group actions of prime order on local normal rings." Algebra Number Theory 7 (1) 63 - 74, 2013. https://doi.org/10.2140/ant.2013.7.63

Information

Received: 14 April 2011; Revised: 23 January 2012; Accepted: 20 February 2012; Published: 2013
First available in Project Euclid: 20 December 2017

zbMATH: 1273.14094
MathSciNet: MR3037890
Digital Object Identifier: 10.2140/ant.2013.7.63

Subjects:
Primary: 14L30
Secondary: 13A50

Keywords: Algebraic Geometry , commutative algebra , group actions

Rights: Copyright © 2013 Mathematical Sciences Publishers

JOURNAL ARTICLE
12 PAGES


SHARE
Vol.7 • No. 1 • 2013
MSP
Back to Top