Abstract
The Heisenberg algebra is deformed with the set of parameters $\{q, l,\lambda\}$ to generate a new family of generalized coherent states respecting the Klauder criteria. In this framework, the matrix elements of relevant operators are exactly computed. Then, a proof on the subPoissonian character of the statistics of the main deformed states is provided. This property is used to determine the induced generalized metric.
Citation
J. D. Bukweli-Kyemba. M. N. Hounkonnou. "$(q;l,\lambda)$-Deformed Heisenberg Algebra: Coherent States, Their Statistics and Geometry." Afr. Diaspora J. Math. (N.S.) 14 (2) 38 - 56, 2012.
Information