Abstract
We describe the natural identification of $FH_*(X \times X, \triangle; \omega \oplus \omega)$ with $FH_*(X, \omega)$. Under this identification, we show that the extra elements in ${\rm Ham}(X \times X, \omega \oplus \omega)$ found in [3], for $X = (S^2 \times S^2, \omega_0 \oplus \lambda \omega_0)$ for $\lambda > 1$, do not define new invertible elements in $FH_*(X, \omega)$.
Citation
S. Hu. F. Lalonde. "An Example Concerning Hamiltonian Groups of Self Product II." Afr. Diaspora J. Math. (N.S.) 14 (2) 234 - 247, 2012.