Open Access
August 2009 Non-linear sigma models via the chiral de Rham complex
Joel Ekstrand, Reimundo Heluani, Johan Källén, Maxim Zabzine
Adv. Theor. Math. Phys. 13(4): 1221-1254 (August 2009).

Abstract

We propose a physical interpretation of the chiral de Rham complex as a formal Hamiltonian quantization of the supersymmetric non-linear sigma model. We show that the chiral de Rham complex on a Calabi–Yau manifold carries all information about the classical dynamics of the sigma model. Physically, this provides an operator realization of the non-linear sigma model. Mathematically, the idea suggests the use of Hamiltonian flow equations within the vertex algebra formalism with the possibility to incorporate both left and right moving sectors within one mathematical framework.

Citation

Download Citation

Joel Ekstrand. Reimundo Heluani. Johan Källén. Maxim Zabzine. "Non-linear sigma models via the chiral de Rham complex." Adv. Theor. Math. Phys. 13 (4) 1221 - 1254, August 2009.

Information

Published: August 2009
First available in Project Euclid: 6 July 2010

MathSciNet: MR2661205
zbMATH: 1194.81145

Rights: Copyright © 2009 International Press of Boston

Vol.13 • No. 4 • August 2009
Back to Top