Open Access
2011 Compression bounds for Lipschitz maps from the Heisenberg group to L1
Jeff Cheeger, Bruce Kleiner, Assaf Naor
Author Affiliations +
Acta Math. 207(2): 291-373 (2011). DOI: 10.1007/s11511-012-0071-9

Abstract

We prove a quantitative bi-Lipschitz non-embedding theorem for the Heisenberg group with its Carnot–Carathéodory metric and apply it to give a lower bound on the integrality gap of the Goemans–Linial semidefinite relaxation of the sparsest cut problem.

Citation

Download Citation

Jeff Cheeger. Bruce Kleiner. Assaf Naor. "Compression bounds for Lipschitz maps from the Heisenberg group to L1." Acta Math. 207 (2) 291 - 373, 2011. https://doi.org/10.1007/s11511-012-0071-9

Information

Received: 24 November 2009; Published: 2011
First available in Project Euclid: 31 January 2017

zbMATH: 1247.46020
MathSciNet: MR2892612
Digital Object Identifier: 10.1007/s11511-012-0071-9

Rights: 2011 © Institut Mittag-Leffler

Vol.207 • No. 2 • 2011
Back to Top