2021 Numerical Solutions for Laminar Boundary Layer Nanofluid Flow along with a Moving Cylinder with Heat Generation, Thermal Radiation, and Slip Parameter
Titilayo Morenike Agbaje, Gilbert Makanda
Author Affiliations +
Abstr. Appl. Anal. 2021: 1-18 (2021). DOI: 10.1155/2021/8288534

Abstract

The investigation of the numerical solution of the laminar boundary layer flow along with a moving cylinder with heat generation, thermal radiation, and surface slip effect is carried out. The fluid mathematical model developed from the Navier-Stokes equations resulted in a system of partial differential equations which were then solved by the multidomain bivariate spectral quasilinearization method (MD-BSQLM). The results show that increasing the velocity slip factor results in an enhanced increase in velocity and temperature profiles. Increasing the heat generation parameter increases temperature profiles; increasing the radiation parameter and the Eckert numbers both increase the temperature profiles. The concentration profiles decrease with increasing radial coordinate. Increasing the Brownian motion and the thermophoresis parameter both destabilizes the concentration profiles. Increasing the Schmidt number reduces temperature profiles. The effect of increasing selected parameters: the velocity slip, Brownian motion, and the radiation parameter on all residual errors show that these errors do not deteriorate. This shows that the MD-BSQLM is very accurate and robust. The method was compared with similar results in the literature and was found to be in excellent agreement.

Acknowledgments

This work is supported by the National Research Foundation (NRF) of South Africa (Grant Number 129490), the DSI-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), South Africa, and the Central University of Technology, South Africa.

Citation

Download Citation

Titilayo Morenike Agbaje. Gilbert Makanda. "Numerical Solutions for Laminar Boundary Layer Nanofluid Flow along with a Moving Cylinder with Heat Generation, Thermal Radiation, and Slip Parameter." Abstr. Appl. Anal. 2021 1 - 18, 2021. https://doi.org/10.1155/2021/8288534

Information

Received: 15 April 2021; Accepted: 5 November 2021; Published: 2021
First available in Project Euclid: 28 July 2021

Digital Object Identifier: 10.1155/2021/8288534

Rights: Copyright © 2021 Hindawi

JOURNAL ARTICLE
18 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.2021 • 2021
Back to Top