The traveling wave solutions and multiwave solutions to (3 + 1)-dimensional Jimbo-Miwa equation are investigated in this paper. As a result, besides the exact bounded solitary wave solutions, we obtain the existence of two families of bounded periodic traveling wave solutions and their implicit formulas by analysis of phase portrait of the corresponding traveling wave system. We derive the exact 2-wave solutions and two families of arbitrary finite *N*-wave solutions by studying the linear space of its Hirota bilinear equation, which confirms that the (3 + 1)-dimensional Jimbo-Miwa equation admits multiwave solutions of any order and is completely integrable.

## References

J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,”

*Chaos, Solitons & Fractals*, vol. 30, no. 3, pp. 700–708, 2006. MR2238695 1141.35448 J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,”*Chaos, Solitons & Fractals*, vol. 30, no. 3, pp. 700–708, 2006. MR2238695 1141.35448 E. J. Parkes and B. R. Duffy, “An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations,”

*Computer Physics Communications*, vol. 98, no. 3, pp. 288–300, 1996. E. J. Parkes and B. R. Duffy, “An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations,”*Computer Physics Communications*, vol. 98, no. 3, pp. 288–300, 1996. M. Wang, Y. Zhou, and Z. Li, “Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,”

*Physics Letters A*, vol. 216, no. 1–5, pp. 67–75, 1996. M. Wang, Y. Zhou, and Z. Li, “Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,”*Physics Letters A*, vol. 216, no. 1–5, pp. 67–75, 1996. Z. Feng, “Comment on `on the extended applications of homogeneous balance method',”

*Applied Mathematics and Computation*, vol. 158, no. 2, pp. 593–596, 2004. MR2094643 10.1016/j.amc.2003.10.003 Z. Feng, “Comment on `on the extended applications of homogeneous balance method',”*Applied Mathematics and Computation*, vol. 158, no. 2, pp. 593–596, 2004. MR2094643 10.1016/j.amc.2003.10.003 S. Zhang and T. Xia, “A generalized new auxiliary equation method and its applications to nonlinear partial differential equations,”

*Physics Letters A*, vol. 363, no. 5-6, pp. 356–360, 2007. MR2287814 1197.35008 10.1016/j.physleta.2006.11.035 S. Zhang and T. Xia, “A generalized new auxiliary equation method and its applications to nonlinear partial differential equations,”*Physics Letters A*, vol. 363, no. 5-6, pp. 356–360, 2007. MR2287814 1197.35008 10.1016/j.physleta.2006.11.035 H. Zhang, “New exact travelling wave solutions of nonlinear evolution equation using a sub-equation,”

*Chaos, Solitons & Fractals*, vol. 39, no. 2, pp. 873–881, 2009. MR2518927 1197.35257 10.1016/j.chaos.2007.01.132 H. Zhang, “New exact travelling wave solutions of nonlinear evolution equation using a sub-equation,”*Chaos, Solitons & Fractals*, vol. 39, no. 2, pp. 873–881, 2009. MR2518927 1197.35257 10.1016/j.chaos.2007.01.132 W. X. Ma, “Travelling wave solutions to a seventh order gen-eralized KdV equation,”

*Physics Letters A*, vol. 180, no. 3, pp. 221–224, 1993. MR1238444 10.1016/0375-9601(93)90699-Z W. X. Ma, “Travelling wave solutions to a seventh order gen-eralized KdV equation,”*Physics Letters A*, vol. 180, no. 3, pp. 221–224, 1993. MR1238444 10.1016/0375-9601(93)90699-Z C. Yan, “A simple transformation for nonlinear waves,”

*Physics Letters A*, vol. 224, no. 1-2, pp. 77–84, 1996. MR1427895 1037.35504 10.1016/S0375-9601(96)00770-0 C. Yan, “A simple transformation for nonlinear waves,”*Physics Letters A*, vol. 224, no. 1-2, pp. 77–84, 1996. MR1427895 1037.35504 10.1016/S0375-9601(96)00770-0 A.-M. Wazwaz, “A sine-cosine method for handling nonlinear wave equations,”

*Mathematical and Computer Modelling*, vol. 40, no. 5-6, pp. 499–508, 2004. MR2102204 1112.35352 10.1016/j.mcm.2003.12.010 A.-M. Wazwaz, “A sine-cosine method for handling nonlinear wave equations,”*Mathematical and Computer Modelling*, vol. 40, no. 5-6, pp. 499–508, 2004. MR2102204 1112.35352 10.1016/j.mcm.2003.12.010 H. B. Lan and K. L. Wang, “Exact solutions for two nonlinear equations. I,”

*Journal of Physics A. Mathematical and General*, vol. 23, no. 17, pp. 3923–3928, 1990. MR1077305 0718.35020 10.1088/0305-4470/23/17/021 H. B. Lan and K. L. Wang, “Exact solutions for two nonlinear equations. I,”*Journal of Physics A. Mathematical and General*, vol. 23, no. 17, pp. 3923–3928, 1990. MR1077305 0718.35020 10.1088/0305-4470/23/17/021 E. J. Parkes, B. R. Duffy, and P. C. Abbott, “The Jacobi ellip-tic-function method for finding periodic-wave solutions to nonlinear evolution equations,”

*Physics Letters A*, vol. 295, no. 5-6, pp. 280–286, 2002. MR1925472 1052.35143 10.1016/S0375-9601(02)00180-9 E. J. Parkes, B. R. Duffy, and P. C. Abbott, “The Jacobi ellip-tic-function method for finding periodic-wave solutions to nonlinear evolution equations,”*Physics Letters A*, vol. 295, no. 5-6, pp. 280–286, 2002. MR1925472 1052.35143 10.1016/S0375-9601(02)00180-9 G. L. Cai, Q. C. Wang, and J. J. Huang, “A modified F-expansion method for solving breaking soliton equation,”

*International Journal of Nonlinear Science*, vol. 2, pp. 122–128, 2006. G. L. Cai, Q. C. Wang, and J. J. Huang, “A modified F-expansion method for solving breaking soliton equation,”*International Journal of Nonlinear Science*, vol. 2, pp. 122–128, 2006. W. Hereman and W. Zhuang, “Symbolic computation of solitons with Macsyma,” in

*Computational and Applied Mathematics, II (Dublin, 1991)*, pp. 287–296, North-Holland, Amsterdam, The Netherlands, 1992. MR1204693 0765.35048 W. Hereman and W. Zhuang, “Symbolic computation of solitons with Macsyma,” in*Computational and Applied Mathematics, II (Dublin, 1991)*, pp. 287–296, North-Holland, Amsterdam, The Netherlands, 1992. MR1204693 0765.35048 N. A. Kudryashov, “Seven common errors in finding exact solu-tions of nonlinear differential equations,”

*Communications in Nonlinear Science and Numerical Simulation*, vol. 14, no. 9-10, pp. 3507–3529, 2009. MR2509943 1221.35342 10.1016/j.cnsns.2009.01.023 N. A. Kudryashov, “Seven common errors in finding exact solu-tions of nonlinear differential equations,”*Communications in Nonlinear Science and Numerical Simulation*, vol. 14, no. 9-10, pp. 3507–3529, 2009. MR2509943 1221.35342 10.1016/j.cnsns.2009.01.023 L. Zhang and X. Huo, “On the exp-function method for con-structing travelling wave solutions of nonlinear equations,” in

*Nonlinear and Modern Mathematical Physics: Proceedings of the First International Workshop*, vol. 1212, pp. 280–285, American Institute of Physics, Melville, NY, USA, 2010. MR2648971 1216.35109 L. Zhang and X. Huo, “On the exp-function method for con-structing travelling wave solutions of nonlinear equations,” in*Nonlinear and Modern Mathematical Physics: Proceedings of the First International Workshop*, vol. 1212, pp. 280–285, American Institute of Physics, Melville, NY, USA, 2010. MR2648971 1216.35109 L. Zhang, L.-Q. Chen, and X. Huo, “The effects of horizontal singular straight line in a generalized nonlinear Klein-Gordon model equation,”

*Nonlinear Dynamics*, vol. 72, no. 4, pp. 789–801, 2013. MR3064500 10.1007/s11071-013-0753-7 L. Zhang, L.-Q. Chen, and X. Huo, “The effects of horizontal singular straight line in a generalized nonlinear Klein-Gordon model equation,”*Nonlinear Dynamics*, vol. 72, no. 4, pp. 789–801, 2013. MR3064500 10.1007/s11071-013-0753-7 R. Hirota,

*The Direct Method in Soliton Theory*, vol. 155 of*Cambridge Tracts in Mathematics*, Cambridge University Press, Cambridge, Mass, USA, 2004. MR2085332 R. Hirota,*The Direct Method in Soliton Theory*, vol. 155 of*Cambridge Tracts in Mathematics*, Cambridge University Press, Cambridge, Mass, USA, 2004. MR2085332 Y. Ye, L. Wang, Z. Chang, and J. He, “An efficient algorithm of logarithmic transformation to Hirota bilinear form of KdV-type bilinear equation,”

*Applied Mathematics and Computation*, vol. 218, no. 5, pp. 2200–2209, 2011. MR2831494 05992915 10.1016/j.amc.2011.07.036 Y. Ye, L. Wang, Z. Chang, and J. He, “An efficient algorithm of logarithmic transformation to Hirota bilinear form of KdV-type bilinear equation,”*Applied Mathematics and Computation*, vol. 218, no. 5, pp. 2200–2209, 2011. MR2831494 05992915 10.1016/j.amc.2011.07.036 Z. Zhou, J. Fu, and Z. Li, “An implementation for the algorithm of Hirota bilinear form of PDE in the Maple system,”

*Applied Mathematics and Computation*, vol. 183, no. 2, pp. 872–877, 2006. MR2290840 1110.65098 10.1016/j.amc.2006.06.034 Z. Zhou, J. Fu, and Z. Li, “An implementation for the algorithm of Hirota bilinear form of PDE in the Maple system,”*Applied Mathematics and Computation*, vol. 183, no. 2, pp. 872–877, 2006. MR2290840 1110.65098 10.1016/j.amc.2006.06.034 Z. Zhou, J. Fu, and Z. Li, “Maple packages for computing Hirota's bilinear equation and multisoliton solutions of nonlinear evolution equations,”

*Applied Mathematics and Computation*, vol. 217, no. 1, pp. 92–104, 2010. MR2672566 1205.65281 10.1016/j.amc.2010.05.012 Z. Zhou, J. Fu, and Z. Li, “Maple packages for computing Hirota's bilinear equation and multisoliton solutions of nonlinear evolution equations,”*Applied Mathematics and Computation*, vol. 217, no. 1, pp. 92–104, 2010. MR2672566 1205.65281 10.1016/j.amc.2010.05.012 X.-D. Yang and H.-Y. Ruan, “A Maple package on symbolic com-putation of Hirota bilinear form for nonlinear equations,”

*Com-munications in Theoretical Physics*, vol. 52, no. 5, pp. 801–807, 2009. MR2641434 1186.35194 10.1088/0253-6102/52/5/07 X.-D. Yang and H.-Y. Ruan, “A Maple package on symbolic com-putation of Hirota bilinear form for nonlinear equations,”*Com-munications in Theoretical Physics*, vol. 52, no. 5, pp. 801–807, 2009. MR2641434 1186.35194 10.1088/0253-6102/52/5/07 J. Hietarinta, “A search for bilinear equations passing Hirota's three-soliton condition. II. mKdV-type bilinear equations,”

*Journal of Mathematical Physics*, vol. 28, no. 9, pp. 2094–2101, 1987. MR904425 0658.35081 10.1063/1.527421 J. Hietarinta, “A search for bilinear equations passing Hirota's three-soliton condition. II. mKdV-type bilinear equations,”*Journal of Mathematical Physics*, vol. 28, no. 9, pp. 2094–2101, 1987. MR904425 0658.35081 10.1063/1.527421 J. Hietarinta, “A search for bilinear equations passing Hirota's three-soliton condition. III. Sine-Gordon-type bilinear equations,”

*Journal of Mathematical Physics*, vol. 28, no. 11, pp. 2586–2592, 1987. MR913411 0658.35082 10.1063/1.527750 J. Hietarinta, “A search for bilinear equations passing Hirota's three-soliton condition. III. Sine-Gordon-type bilinear equations,”*Journal of Mathematical Physics*, vol. 28, no. 11, pp. 2586–2592, 1987. MR913411 0658.35082 10.1063/1.527750 J. Hietarinta, “A search for bilinear equations passing Hirota's three-soliton condition. IV. Complex bilinear equations,”

*Journal of Mathematical Physics*, vol. 29, no. 3, pp. 628–635, 1988. MR931466 0684.35082 10.1063/1.528002 J. Hietarinta, “A search for bilinear equations passing Hirota's three-soliton condition. IV. Complex bilinear equations,”*Journal of Mathematical Physics*, vol. 29, no. 3, pp. 628–635, 1988. MR931466 0684.35082 10.1063/1.528002 W.-X. Ma, T. Huang, and Y. Zhang, “A multiple exp-function method for nonlinear differential equations and its application,”

*Physica Scripta*, vol. 82, no. 6, Article ID 065003, 2010. W.-X. Ma, T. Huang, and Y. Zhang, “A multiple exp-function method for nonlinear differential equations and its application,”*Physica Scripta*, vol. 82, no. 6, Article ID 065003, 2010. W.-X. Ma and W. Strampp, “Bilinear forms and Bäcklund trans-formations of the perturbation systems,”

*Physics Letters A*, vol. 341, no. 5-6, pp. 441–449, 2005. MR2148263 1171.37332 10.1016/j.physleta.2005.05.013 W.-X. Ma and W. Strampp, “Bilinear forms and Bäcklund trans-formations of the perturbation systems,”*Physics Letters A*, vol. 341, no. 5-6, pp. 441–449, 2005. MR2148263 1171.37332 10.1016/j.physleta.2005.05.013 W.-X. Ma, R. Zhou, and L. Gao, “Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in $(2+1)$ dimensions,”

*Modern Physics Letters A*, vol. 24, no. 21, pp. 1677–1688, 2009. MR2549829 1168.35426 10.1142/S0217732309030096 W.-X. Ma, R. Zhou, and L. Gao, “Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in $(2+1)$ dimensions,”*Modern Physics Letters A*, vol. 24, no. 21, pp. 1677–1688, 2009. MR2549829 1168.35426 10.1142/S0217732309030096 W.-X. Ma and E. Fan, “Linear superposition principle applying to Hirota bilinear equations,”

*Computers & Mathematics with Applications*, vol. 61, no. 4, pp. 950–959, 2011. MR2770499 1217.35164 W.-X. Ma and E. Fan, “Linear superposition principle applying to Hirota bilinear equations,”*Computers & Mathematics with Applications*, vol. 61, no. 4, pp. 950–959, 2011. MR2770499 1217.35164 W.-X. Ma, Y. Zhang, Y. Tang, and J. Tu, “Hirota bilinear equations with linear subspaces of solutions,”

*Applied Mathematics and Computation*, vol. 218, no. 13, pp. 7174–7183, 2012. MR2880302 1245.35109 10.1016/j.amc.2011.12.085 W.-X. Ma, Y. Zhang, Y. Tang, and J. Tu, “Hirota bilinear equations with linear subspaces of solutions,”*Applied Mathematics and Computation*, vol. 218, no. 13, pp. 7174–7183, 2012. MR2880302 1245.35109 10.1016/j.amc.2011.12.085 M. Jimbo and T. Miwa, “Solitons and infinite-dimensional Lie algebras,”

*Publications of the Research Institute for Mathematical Sciences*, vol. 19, no. 3, pp. 943–1001, 1983. MR723457 0571.35104 10.2977/prims/1195182017 M. Jimbo and T. Miwa, “Solitons and infinite-dimensional Lie algebras,”*Publications of the Research Institute for Mathematical Sciences*, vol. 19, no. 3, pp. 943–1001, 1983. MR723457 0571.35104 10.2977/prims/1195182017 W.-X. Ma and J.-H. Lee, “A transformed rational function method and exact solutions to the $3+1$ dimensional Jimbo-Miwa equation,”

*Chaos, Solitons & Fractals*, vol. 42, no. 3, pp. 1356–1363, 2009. MR2547030 1198.35231 W.-X. Ma and J.-H. Lee, “A transformed rational function method and exact solutions to the $3+1$ dimensional Jimbo-Miwa equation,”*Chaos, Solitons & Fractals*, vol. 42, no. 3, pp. 1356–1363, 2009. MR2547030 1198.35231 Z. Li and Z. Dai, “Abundant new exact solutions for the $(3+1)$-dimensional Jimbo-Miwa equation,”

*Journal of Mathematical Analysis and Applications*, vol. 361, no. 2, pp. 587–590, 2010. MR2568721 10.1016/j.jmaa.2009.07.040 Z. Li and Z. Dai, “Abundant new exact solutions for the $(3+1)$-dimensional Jimbo-Miwa equation,”*Journal of Mathematical Analysis and Applications*, vol. 361, no. 2, pp. 587–590, 2010. MR2568721 10.1016/j.jmaa.2009.07.040 N. A. Kudryashov and D. I. Sinelshchikov, “A note on “Abundant new exact solutions for the $(3+1)$-dimensional Jimbo-Miwa equation,”

*Journal of Mathematical Analysis and Applications*, vol. 371, no. 1, pp. 393–396, 2010. MR2661082 10.1016/j.jmaa.2010.04.072 N. A. Kudryashov and D. I. Sinelshchikov, “A note on “Abundant new exact solutions for the $(3+1)$-dimensional Jimbo-Miwa equation,”*Journal of Mathematical Analysis and Applications*, vol. 371, no. 1, pp. 393–396, 2010. MR2661082 10.1016/j.jmaa.2010.04.072 A.-M. Wazwaz, “Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations,”

*Applied Mathematics and Computation*, vol. 203, no. 2, pp. 592–597, 2008. \endinput MR2458974 1154.65366 10.1016/j.amc.2008.05.004 A.-M. Wazwaz, “Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations,”*Applied Mathematics and Computation*, vol. 203, no. 2, pp. 592–597, 2008. \endinput MR2458974 1154.65366 10.1016/j.amc.2008.05.004