Open Access
2014 Cusped and Smooth Solitons for the Generalized Camassa-Holm Equation on the Nonzero Constant Pedestal
Dong Li, Yongan Xie, Shengqiang Tang
Abstr. Appl. Anal. 2014(SI67): 1-10 (2014). DOI: 10.1155/2014/423063

Abstract

We investigate the traveling solitary wave solutions of the generalized Camassa-Holm equation u t  -  u x x t  +  3 u 2 u x = 2 u x u x x  +  u u x x x on the nonzero constant pedestal lim ξ ± u ξ = A . Our procedure shows that the generalized Camassa-Holm equation with nonzero constant boundary has cusped and smooth soliton solutions. Mathematical analysis and numerical simulations are provided for these traveling soliton solutions of the generalized Camassa-Holm equation. Some exact explicit solutions are obtained. We show some graphs to explain our these solutions.

Citation

Download Citation

Dong Li. Yongan Xie. Shengqiang Tang. "Cusped and Smooth Solitons for the Generalized Camassa-Holm Equation on the Nonzero Constant Pedestal." Abstr. Appl. Anal. 2014 (SI67) 1 - 10, 2014. https://doi.org/10.1155/2014/423063

Information

Published: 2014
First available in Project Euclid: 26 March 2014

zbMATH: 07022362
MathSciNet: MR3166611
Digital Object Identifier: 10.1155/2014/423063

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI67 • 2014
Back to Top