Abstract
The quasidifferential of a quasidifferentiable function in the sense of Demyanov and Rubinov is not uniquely defined. Xia proposed the notion of the kernelled quasidifferential, which is expected to be a representative for the equivalence class of quasidifferentials. Although the kernelled quasidifferential is known to have good algebraic properties and geometric structure, it is still not very convenient for calculating the kernelled quasidifferentials of and , where and are kernelled quasidifferentiable functions. In this paper, the notion of adjoint kernelled quasidifferential, which is well-defined for and , is employed as a representative of the equivalence class of quasidifferentials. Some algebraic properties of the adjoint kernelled quasidifferential are given and the existence of the adjoint kernelled quasidifferential is explored by means of the minimal quasidifferential and the Demyanov difference of convex sets. Under some condition, a formula of the adjoint kernelled quasidifferential is presented.
Citation
Si-Da Lin. Fu-Min Xiao. Zun-Quan Xia. Li-Ping Pang. "Research on Adjoint Kernelled Quasidifferential." Abstr. Appl. Anal. 2014 (SI56) 1 - 10, 2014. https://doi.org/10.1155/2014/131482