Open Access
2014 Global Behavior of the Difference Equation x n + 1 = x n - 1 g ( x n )
Hongjian Xi, Taixiang Sun, Bin Qin, Hui Wu
Abstr. Appl. Anal. 2014(SI53): 1-5 (2014). DOI: 10.1155/2014/705893

Abstract

We consider the following difference equation x n + 1 = x n - 1 g ( x n ) , n = 0,1 , , where initial values x - 1 , x 0 [ 0 , + ) and g : [ 0 , + ) ( 0,1 ] is a strictly decreasing continuous surjective function. We show the following. (1) Every positive solution of this equation converges to a , 0 , a , 0 , , or 0 , a , 0 , a , for some a [ 0 , + ) . (2) Assume a ( 0 , + ) . Then the set of initial conditions ( x - 1 , x 0 ) ( 0 , + ) × ( 0 , + ) such that the positive solutions of this equation converge to a , 0 , a , 0 , , or 0 , a , 0 , a , is a unique strictly increasing continuous function or an empty set.

Citation

Download Citation

Hongjian Xi. Taixiang Sun. Bin Qin. Hui Wu. "Global Behavior of the Difference Equation x n + 1 = x n - 1 g ( x n ) ." Abstr. Appl. Anal. 2014 (SI53) 1 - 5, 2014. https://doi.org/10.1155/2014/705893

Information

Published: 2014
First available in Project Euclid: 27 February 2015

zbMATH: 07022916
MathSciNet: MR3166646
Digital Object Identifier: 10.1155/2014/705893

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI53 • 2014
Back to Top