Abstract
Suppose are positive integers. Let be the space of all complex upper triangular matrices, and let be an injective linear map on . Then is an idempotent matrix in whenever is an idempotent matrix in if and only if there exists an invertible matrix such that , or when , , where or and or
Citation
Li Yang. Wei Zhang. Jinli Xu. "Linear Maps on Upper Triangular Matrices Spaces Preserving Idempotent Tensor Products." Abstr. Appl. Anal. 2014 (SI52) 1 - 8, 2014. https://doi.org/10.1155/2014/148321
Information