Open Access
2014 Linear Maps on Upper Triangular Matrices Spaces Preserving Idempotent Tensor Products
Li Yang, Wei Zhang, Jinli Xu
Abstr. Appl. Anal. 2014(SI52): 1-8 (2014). DOI: 10.1155/2014/148321

Abstract

Suppose m , n 2 are positive integers. Let 𝒯 n be the space of all n × n complex upper triangular matrices, and let ϕ be an injective linear map on 𝒯 m 𝒯 n . Then ϕ ( A B ) is an idempotent matrix in 𝒯 m 𝒯 n whenever A B is an idempotent matrix in 𝒯 m 𝒯 n if and only if there exists an invertible matrix P 𝒯 m 𝒯 n such that ϕ ( A B ) = P ( ξ 1 ( A ) ξ 2 ( B ) ) P - 1 , A 𝒯 m , B 𝒯 n , or when m = n , ϕ ( A B ) = P ( ξ 1 ( B ) ξ 2 ( A ) ) P - 1 , A 𝒯 m , B 𝒯 m , where ξ 1 ( [ a i j ] ) = [ a i j ] or ξ 1 ( [ a i j ] ) = [ a m - i + 1 , m - j + 1 ] and ξ 2 ( [ b i j ] ) = [ b i j ] or ξ 2 ( [ b i j ] ) = [ b n - i + 1 , n - j + 1 ] .

Citation

Download Citation

Li Yang. Wei Zhang. Jinli Xu. "Linear Maps on Upper Triangular Matrices Spaces Preserving Idempotent Tensor Products." Abstr. Appl. Anal. 2014 (SI52) 1 - 8, 2014. https://doi.org/10.1155/2014/148321

Information

Published: 2014
First available in Project Euclid: 26 March 2014

zbMATH: 1142.11027
MathSciNet: MR3166569
Digital Object Identifier: 10.1155/2014/148321

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI52 • 2014
Back to Top