Open Access
2014 Lyapunov Techniques for Stochastic Differential Equations Driven by Fractional Brownian Motion
Caibin Zeng, Qigui Yang, YangQuan Chen
Abstr. Appl. Anal. 2014(SI35): 1-9 (2014). DOI: 10.1155/2014/292653

Abstract

Little seems to be known about evaluating the stochastic stability of stochastic differential equations (SDEs) driven by fractional Brownian motion (fBm) via stochastic Lyapunov technique. The objective of this paper is to work with stochastic stability criterions for such systems. By defining a new derivative operator and constructing some suitable stochastic Lyapunov function, we establish some sufficient conditions for two types of stability, that is, stability in probability and moment exponential stability of a class of nonlinear SDEs driven by fBm. We will also give an example to illustrate our theory. Specifically, the obtained results open a possible way to stochastic stabilization and destabilization problem associated with nonlinear SDEs driven by fBm.

Citation

Download Citation

Caibin Zeng. Qigui Yang. YangQuan Chen. "Lyapunov Techniques for Stochastic Differential Equations Driven by Fractional Brownian Motion." Abstr. Appl. Anal. 2014 (SI35) 1 - 9, 2014. https://doi.org/10.1155/2014/292653

Information

Published: 2014
First available in Project Euclid: 6 October 2014

MathSciNet: MR3182272
Digital Object Identifier: 10.1155/2014/292653

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI35 • 2014
Back to Top