Invariant solutions and conservation laws of the (2 + 1)-dimensional Boussinesq equation are studied. The Lie symmetry approach is used to obtain the invariant solutions. Conservation laws for the underlying equation are derived by utilizing the new conservation theorem and the partial Lagrange approach.

## References

M. J. Ablowitz and P. A. Clarkson,

*Solitons, Nonlinear Evolution Equations and Inverse Scattering*, Cambridge University Press, New York, NY, USA, 1991. MR1149378 M. J. Ablowitz and P. A. Clarkson,*Solitons, Nonlinear Evolution Equations and Inverse Scattering*, Cambridge University Press, New York, NY, USA, 1991. MR1149378 Y. Chen, Z. Y. Yan, and H. Q. Zhang, “Exact solutions for a family of variable-coefficient reaction–-duffing equations via the Backlund transformation,”

*Theoretical and Mathematical Physics*, vol. 132, no. 1, pp. 970–975, 2002. 1129.35432 MR1956679 10.4213/tmf348 Y. Chen, Z. Y. Yan, and H. Q. Zhang, “Exact solutions for a family of variable-coefficient reaction–-duffing equations via the Backlund transformation,”*Theoretical and Mathematical Physics*, vol. 132, no. 1, pp. 970–975, 2002. 1129.35432 MR1956679 10.4213/tmf348 A. Wazwaz, “The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves,”

*Applied Mathematics and Computation*, vol. 201, no. 1-2, pp. 489–503, 2008. MR2431946 1143.76018 10.1016/j.amc.2007.12.037 A. Wazwaz, “The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves,”*Applied Mathematics and Computation*, vol. 201, no. 1-2, pp. 489–503, 2008. MR2431946 1143.76018 10.1016/j.amc.2007.12.037 E. Fan, “Two new applications of the homogeneous balance method,”

*Physics Letters A*, vol. 265, no. 5-6, pp. 353–357, 2000. MR1742560 10.1016/S0375-9601(00)00010-4 E. Fan, “Two new applications of the homogeneous balance method,”*Physics Letters A*, vol. 265, no. 5-6, pp. 353–357, 2000. MR1742560 10.1016/S0375-9601(00)00010-4 S. Y. Lou, H. Y. Ruan, D. F. Chen, and W. Z. Chen, “Similarity reductions of the KP equation by a direct method,”

*Journal of Physics A: Mathematical and General*, vol. 24, no. 7, pp. 1455–1467, 1991. MR1121821 10.1088/0305-4470/24/7/019 S. Y. Lou, H. Y. Ruan, D. F. Chen, and W. Z. Chen, “Similarity reductions of the KP equation by a direct method,”*Journal of Physics A: Mathematical and General*, vol. 24, no. 7, pp. 1455–1467, 1991. MR1121821 10.1088/0305-4470/24/7/019 S. Lou, X. Tang, and J. Lin, “Similarity and conditional similarity reductions of a $(2+1)$-dimensional KdV equation via a direct method,”

*Journal of Mathematical Physics*, vol. 41, no. 12, pp. 8286–8303, 2000. MR1797322 10.1063/1.1320859 S. Lou, X. Tang, and J. Lin, “Similarity and conditional similarity reductions of a $(2+1)$-dimensional KdV equation via a direct method,”*Journal of Mathematical Physics*, vol. 41, no. 12, pp. 8286–8303, 2000. MR1797322 10.1063/1.1320859 A. Wazwaz, “The tanh method for traveling wave solutions of nonlinear equations,”

*Applied Mathematics and Computation*, vol. 154, no. 3, pp. 713–723, 2004. MR2072815 1054.65106 10.1016/S0096-3003(03)00745-8 A. Wazwaz, “The tanh method for traveling wave solutions of nonlinear equations,”*Applied Mathematics and Computation*, vol. 154, no. 3, pp. 713–723, 2004. MR2072815 1054.65106 10.1016/S0096-3003(03)00745-8 E. Yusufoglu and A. Bekir, “Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method,”

*International Journal of Computer Mathematics*, vol. 83, no. 12, pp. 915–924, 2006. MR2304960 10.1080/00207160601138756 E. Yusufoglu and A. Bekir, “Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method,”*International Journal of Computer Mathematics*, vol. 83, no. 12, pp. 915–924, 2006. MR2304960 10.1080/00207160601138756 F. M. Mahomed, “Symmetry group classification of ordinary differential equations: survey of some results,”

*Mathematical Methods in the Applied Sciences*, vol. 30, no. 16, pp. 1995–2012, 2007. MR2356600 10.1002/mma.934 F. M. Mahomed, “Symmetry group classification of ordinary differential equations: survey of some results,”*Mathematical Methods in the Applied Sciences*, vol. 30, no. 16, pp. 1995–2012, 2007. MR2356600 10.1002/mma.934 R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation,”

*Journal of Mathematical Physics*, vol. 14, pp. 805–809, 1973. MR0338587 0257.35052 10.1063/1.1666399 R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation,”*Journal of Mathematical Physics*, vol. 14, pp. 805–809, 1973. MR0338587 0257.35052 10.1063/1.1666399 E. V. Krishnan, S. Kumar, and A. Biswas, “Solitons and other nonlinear waves of the Boussinesq equation,”

*Nonlinear Dynamics*, vol. 70, no. 2, pp. 1213–1221, 2012. MR2992128 10.1007/s11071-012-0525-9 E. V. Krishnan, S. Kumar, and A. Biswas, “Solitons and other nonlinear waves of the Boussinesq equation,”*Nonlinear Dynamics*, vol. 70, no. 2, pp. 1213–1221, 2012. MR2992128 10.1007/s11071-012-0525-9 H. W. Yang, B. S. Yin, and Y. L. Shi, “Forced dissipative Boussinesq equation for solitary waves excited by unstable topography,”

*Nonlinear Dynamics*, vol. 70, no. 2, pp. 1389–1396, 2012. MR2992143 10.1007/s11071-012-0541-9 H. W. Yang, B. S. Yin, and Y. L. Shi, “Forced dissipative Boussinesq equation for solitary waves excited by unstable topography,”*Nonlinear Dynamics*, vol. 70, no. 2, pp. 1389–1396, 2012. MR2992143 10.1007/s11071-012-0541-9 S. M. El-Sayed and D. Kaya, “The decomposition method for solving (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation,”

*Applied Mathematics and Computation*, vol. 157, no. 2, pp. 523–534, 2004. MR2088272 10.1016/j.amc.2003.08.059 S. M. El-Sayed and D. Kaya, “The decomposition method for solving (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation,”*Applied Mathematics and Computation*, vol. 157, no. 2, pp. 523–534, 2004. MR2088272 10.1016/j.amc.2003.08.059 M. Senthilvelan, “On the extended applications of homogeneous balance method,”

*Applied Mathematics and Computation*, vol. 123, no. 3, pp. 381–388, 2001. MR1849512 1032.35159 10.1016/S0096-3003(00)00076-X M. Senthilvelan, “On the extended applications of homogeneous balance method,”*Applied Mathematics and Computation*, vol. 123, no. 3, pp. 381–388, 2001. MR1849512 1032.35159 10.1016/S0096-3003(00)00076-X Y. Chen, Z. Yan, and H. Zhang, “New explicit solitary wave solutions for $(2+1)$-dimensional Boussinesq equation and $(3+1)$-dimensional KP equation,”

*Physics Letters A*, vol. 307, no. 2-3, pp. 107–113, 2003. MR1974592 10.1016/S0375-9601(02)01668-7 Y. Chen, Z. Yan, and H. Zhang, “New explicit solitary wave solutions for $(2+1)$-dimensional Boussinesq equation and $(3+1)$-dimensional KP equation,”*Physics Letters A*, vol. 307, no. 2-3, pp. 107–113, 2003. MR1974592 10.1016/S0375-9601(02)01668-7 C. Huai-Tang and Z. Hong-Qing, “New double periodic and multiple soliton solutions of the generalized $(2+1)$-dimensional Boussinesq equation,”

*Chaos, Solitons and Fractals*, vol. 20, no. 4, pp. 765–769, 2004. MR2027305 1049.35150 10.1016/j.chaos.2003.08.006 C. Huai-Tang and Z. Hong-Qing, “New double periodic and multiple soliton solutions of the generalized $(2+1)$-dimensional Boussinesq equation,”*Chaos, Solitons and Fractals*, vol. 20, no. 4, pp. 765–769, 2004. MR2027305 1049.35150 10.1016/j.chaos.2003.08.006 G. W. Bluman and S. Kumei,

*Symmetries and Differential Equations*, vol. 81 of*Applied Mathematical Sciences*, Springer, New York, NY, USA, 1989. MR1006433 G. W. Bluman and S. Kumei,*Symmetries and Differential Equations*, vol. 81 of*Applied Mathematical Sciences*, Springer, New York, NY, USA, 1989. MR1006433 P. J. Olver,

*Applications of Lie Groups to Differential Equations*, vol. 107 of*Graduate Texts in Mathematics*, Springer, Berlin, Germany, 2nd edition, 1993. MR1240056 P. J. Olver,*Applications of Lie Groups to Differential Equations*, vol. 107 of*Graduate Texts in Mathematics*, Springer, Berlin, Germany, 2nd edition, 1993. MR1240056 N. H. Ibragimov, “A new conservation theorem,”

*Journal of Mathematical Analysis and Applications*, vol. 333, no. 1, pp. 311–328, 2007. MR2323493 1160.35008 10.1016/j.jmaa.2006.10.078 N. H. Ibragimov, “A new conservation theorem,”*Journal of Mathematical Analysis and Applications*, vol. 333, no. 1, pp. 311–328, 2007. MR2323493 1160.35008 10.1016/j.jmaa.2006.10.078 N. H. Ibragimov and T. Kolsrud, “Lagrangian approach to evolution equations: symmetries and conservation laws,”

*Nonlinear Dynamics*, vol. 36, no. 1, pp. 29–40, 2004. MR2078617 10.1023/B:NODY.0000034644.82259.1f N. H. Ibragimov and T. Kolsrud, “Lagrangian approach to evolution equations: symmetries and conservation laws,”*Nonlinear Dynamics*, vol. 36, no. 1, pp. 29–40, 2004. MR2078617 10.1023/B:NODY.0000034644.82259.1f A. H. Kara and F. M. Mahomed, “Relationship between symmetries and conservation laws,”

*International Journal of Theoretical Physics*, vol. 39, no. 1, pp. 23–40, 2000. MR1755015 0962.35009 10.1023/A:1003686831523 A. H. Kara and F. M. Mahomed, “Relationship between symmetries and conservation laws,”*International Journal of Theoretical Physics*, vol. 39, no. 1, pp. 23–40, 2000. MR1755015 0962.35009 10.1023/A:1003686831523 A. H. Kara and F. M. Mahomed, “Noether-type symmetries and conservation laws via partial Lagrangians,”

*Nonlinear Dynamics*, vol. 45, no. 3-4, pp. 367–383, 2006. \endinput MR2250141 10.1007/s11071-005-9013-9 A. H. Kara and F. M. Mahomed, “Noether-type symmetries and conservation laws via partial Lagrangians,”*Nonlinear Dynamics*, vol. 45, no. 3-4, pp. 367–383, 2006. \endinput MR2250141 10.1007/s11071-005-9013-9