Open Access
2014 Shape-Preserving and Convergence Properties for the q -Szász-Mirakjan Operators for Fixed q ( 0,1 )
Heping Wang, Fagui Pu, Kai Wang
Abstr. Appl. Anal. 2014(SI10): 1-8 (2014). DOI: 10.1155/2014/563613

Abstract

We introduce a q -generalization of Szász-Mirakjan operators S n , q and discuss their properties for fixed q ( 0,1 ) . We show that the q -Szász-Mirakjan operators S n , q have good shape-preserving properties. For example, S n , q are variation-diminishing, and preserve monotonicity, convexity, and concave modulus of continuity. For fixed q ( 0,1 ) , we prove that the sequence { S n , q f } converges to B , q ( f ) uniformly on [ 0,1 ] for each f C [ 0 ,   1 / ( 1 - q ) ] , where B , q is the limit q -Bernstein operator. We obtain the estimates for the rate of convergence for { S n , q f } by the modulus of continuity of f , and the estimates are sharp in the sense of order for Lipschitz continuous functions.

Citation

Download Citation

Heping Wang. Fagui Pu. Kai Wang. "Shape-Preserving and Convergence Properties for the q -Szász-Mirakjan Operators for Fixed q ( 0,1 ) ." Abstr. Appl. Anal. 2014 (SI10) 1 - 8, 2014. https://doi.org/10.1155/2014/563613

Information

Published: 2014
First available in Project Euclid: 6 October 2014

zbMATH: 07022615
MathSciNet: MR3208544
Digital Object Identifier: 10.1155/2014/563613

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI10 • 2014
Back to Top