Open Access
2014 On Extremal Ranks and Least Squares Solutions Subject to a Rank Restriction
Hongxing Wang, Yeguo Sun
Abstr. Appl. Anal. 2014(SI10): 1-7 (2014). DOI: 10.1155/2014/457298

Abstract

We discuss the feasible interval of the parameter k and a general expression of matrix X which satisfies the rank equation r ( A - B X C ) = k . With these results, we study two problems under the rank constraint r ( A - B X C ) = k . The first one is to determine the maximal and minimal ranks under the rank constraint r ( A - B X C ) = k . The second one is to derive the least squares solutions of B X C - A F = min under the rank constraint r ( A - B X C ) = k .

Citation

Download Citation

Hongxing Wang. Yeguo Sun. "On Extremal Ranks and Least Squares Solutions Subject to a Rank Restriction." Abstr. Appl. Anal. 2014 (SI10) 1 - 7, 2014. https://doi.org/10.1155/2014/457298

Information

Published: 2014
First available in Project Euclid: 6 October 2014

zbMATH: 07022414
MathSciNet: MR3232839
Digital Object Identifier: 10.1155/2014/457298

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI10 • 2014
Back to Top