Open Access
2013 Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
Zai-Yin He, Wei-Mao Qian, Yun-Liang Jiang, Ying-Qing Song, Yu-Ming Chu
Abstr. Appl. Anal. 2013: 1-5 (2013). DOI: 10.1155/2013/903982

Abstract

We give the greatest values r 1 , r 2 and the least values s 1 , s 2 in (1/2, 1) such that the double inequalities C ( r 1 a + ( 1 - r 1 ) b , r 1 b + ( 1 - r 1 ) a ) < α A ( a , b ) + ( 1 - α ) T ( a , b ) < C ( s 1 a + ( 1 - s 1 ) b , s 1 b + ( 1 - s 1 ) a ) and C ( r 2 a + ( 1 - r 2 ) b , r 2 b + ( 1 - r 2 ) a ) < α A ( a , b ) + ( 1 - α ) M ( a , b ) < C ( s 2 a + ( 1 - s 2 ) b , s 2 b + ( 1 - s 2 ) a ) hold for any α ( 0,1 ) and all a , b > 0 with a b , where A ( a , b ) , M ( a , b ) , C ( a , b ), and T ( a , b ) are the arithmetic, Neuman-Sándor, contraharmonic, and second Seiffert means of a and b , respectively.

Citation

Download Citation

Zai-Yin He. Wei-Mao Qian. Yun-Liang Jiang. Ying-Qing Song. Yu-Ming Chu. "Bounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean." Abstr. Appl. Anal. 2013 1 - 5, 2013. https://doi.org/10.1155/2013/903982

Information

Published: 2013
First available in Project Euclid: 27 February 2014

zbMATH: 1272.26030
MathSciNet: MR3035386
Digital Object Identifier: 10.1155/2013/903982

Rights: Copyright © 2013 Hindawi

Vol.2013 • 2013
Back to Top