Open Access
2013 Bregman Asymptotic Pointwise Nonexpansive Mappings in Banach Spaces
Chin-Tzong Pang, Eskandar Naraghirad
Abstr. Appl. Anal. 2013(SI09): 1-14 (2013). DOI: 10.1155/2013/316813

Abstract

We first introduce a new class of mappings called Bregman asymptotic pointwise nonexpansive mappings and investigate the existence and the approximation of fixed points of such mappings defined on a nonempty, bounded, closed, and convex subset C of a real Banach space E. Without using the original Opial property of a Banach space E, we prove weak convergence theorems for the sequences produced by generalized Mann and Ishikawa iteration processes for Bregman asymptotic pointwise nonexpansive mappings in a reflexive Banach space E. Our results are applicable in the function spaces L p , where 1 < p < is a real number.

Citation

Download Citation

Chin-Tzong Pang. Eskandar Naraghirad. "Bregman Asymptotic Pointwise Nonexpansive Mappings in Banach Spaces." Abstr. Appl. Anal. 2013 (SI09) 1 - 14, 2013. https://doi.org/10.1155/2013/316813

Information

Published: 2013
First available in Project Euclid: 26 February 2014

zbMATH: 1320.47052
MathSciNet: MR3147820
Digital Object Identifier: 10.1155/2013/316813

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI09 • 2013
Back to Top