Open Access
2012 The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems
Yuanyuan Pan, Zhenlai Han, Shurong Sun, Yige Zhao
Abstr. Appl. Anal. 2012: 1-15 (2012). DOI: 10.1155/2012/707631

Abstract

We study the existence of solutions for the boundary value problem - Δ ν y 1 ( t ) = f ( y 1 ( t + ν - 1 ) , y 2 ( t + μ - 1 ) ) , - Δ μ y 2 ( t ) = g ( y 1 ( t + ν - 1 ) , y 2 ( t + μ - 1 ) ) , y 1 ( ν - 2 ) = Δ y 1 ( ν + b ) = 0 , y 2 ( μ - 2 ) = Δ y 2 ( μ + b ) = 0 , where 1 < μ , ν 2 , f , g : R {\times} R R are continuous functions, b N 0 . The existence of solutions to this problem is established by the Guo-Krasnosel'kii theorem and the Schauder fixed-point theorem, and some examples are given to illustrate the main results.

Citation

Download Citation

Yuanyuan Pan. Zhenlai Han. Shurong Sun. Yige Zhao. "The Existence of Solutions to a System of Discrete Fractional Boundary Value Problems." Abstr. Appl. Anal. 2012 1 - 15, 2012. https://doi.org/10.1155/2012/707631

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1244.39006
MathSciNet: MR2898035
Digital Object Identifier: 10.1155/2012/707631

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top