Open Access
2012 Some Generalizations of Ulam-Hyers Stability Functional Equations to Riesz Algebras
Faruk Polat
Abstr. Appl. Anal. 2012: 1-9 (2012). DOI: 10.1155/2012/653508

Abstract

Badora (2002) proved the following stability result. Let ε and δ be nonnegative real numbers, then for every mapping f of a ring R onto a Banach algebra B satisfying | | f ( x + y ) - f ( x ) - f ( y ) | | ε and | | f ( x y ) - f ( x ) f ( y ) | | δ for all x , y R , there exists a unique ring homomorphism h : R B such that | | f ( x ) - h ( x ) | | ε , x R . Moreover, b ( f ( x ) - h ( x ) ) = 0 , ( f ( x ) - h ( x ) ) b = 0 , for all x R and all b from the algebra generated by h ( R ) . In this paper, we generalize Badora's stability result above on ring homomorphisms for Riesz algebras with extended norms.

Citation

Download Citation

Faruk Polat. "Some Generalizations of Ulam-Hyers Stability Functional Equations to Riesz Algebras." Abstr. Appl. Anal. 2012 1 - 9, 2012. https://doi.org/10.1155/2012/653508

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1235.39030
MathSciNet: MR2872311
Digital Object Identifier: 10.1155/2012/653508

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top