Abstract
We consider the maximal dissipative second-order difference (or discrete Sturm-Liouville) operators acting in the Hilbert space (:), that is, the extensions of a minimal symmetric operator with defect index () (in the Weyl-Hamburger limit-circle cases at ). We investigate two classes of maximal dissipative operators with separated boundary conditions, called “dissipative at ” and “dissipative at .” In each case, we construct a self-adjoint dilation of the maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We also establish a functional model of the maximal dissipative operator and determine its characteristic function through the Titchmarsh-Weyl function of the self-adjoint operator. We prove the completeness of the system of eigenvectors and associated vectors of the maximal dissipative operators.
Citation
Bilender P. Allahverdiev. "Nonself-Adjoint Second-Order Difference Operators in Limit-Circle Cases." Abstr. Appl. Anal. 2012 1 - 16, 2012. https://doi.org/10.1155/2012/473461
Information