Open Access
2012 Asymptotic Convergence of the Solutions of a Dynamic Equation on Discrete Time Scales
J. Diblík, M. Růžičková, Z. Šmarda, Z. Šutá
Abstr. Appl. Anal. 2012: 1-20 (2012). DOI: 10.1155/2012/580750

Abstract

The paper investigates a dynamic equation Δ y ( t n ) = β ( t n ) [ y ( t n j ) y ( t n k ) ] for n , where k and j are integers such that k > j 0 , on an arbitrary discrete time scale T : = { t n } with t n , n n 0 k = { n 0 k , n 0 k + 1 , } , n 0 , t n < t n + 1 , Δ y ( t n ) = y ( t n + 1 ) y ( t n ) , and lim n t n = . We assume β : T ( 0 , ) . It is proved that, for the asymptotic convergence of all solutions, the existence of an increasing and asymptotically convergent solution is sufficient. Therefore, the main attention is paid to the criteria for the existence of an increasing solution asymptotically convergent for n . The results are presented as inequalities for the function β . Examples demonstrate that the criteria obtained are sharp in a sense.

Citation

Download Citation

J. Diblík. M. Růžičková. Z. Šmarda. Z. Šutá. "Asymptotic Convergence of the Solutions of a Dynamic Equation on Discrete Time Scales." Abstr. Appl. Anal. 2012 1 - 20, 2012. https://doi.org/10.1155/2012/580750

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1232.39006
MathSciNet: MR2872308
Digital Object Identifier: 10.1155/2012/580750

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top