Open Access
2012 Approximation of Mixed-Type Functional Equations in Menger PN-Spaces
M. Eshaghi Gordji, H. Khodaei, Y. W. Lee, G. H. Kim
Abstr. Appl. Anal. 2012: 1-17 (2012). DOI: 10.1155/2012/392179

Abstract

Let X and Y be vector spaces. We show that a function f : X Y with f ( 0 ) = 0 satisfies Δ f ( x 1 , , x n ) = 0 for all x 1 , , x n X , if and only if there exist functions C : X × X × X Y , B : X × X Y and A : X Y such that f ( x ) = C ( x , x , x ) + B ( x , x ) + A ( x ) for all x X , where the function C is symmetric for each fixed one variable and is additive for fixed two variables, B is symmetric bi-additive, A is additive and Δ f ( x 1 , , x n ) = k = 2 n ( i 1 = 2 k i 2 = i 1 + 1 k + 1 i n - k + 1 = i n - k + 1 n ) f ( i = 1 , i i 1 , , i n - k + 1 n x i - r = 1 n - k + 1 x i r ) + f ( i = 1 n x i ) - 2 n - 2 i = 2 n ( f ( x 1 + x i ) + f ( x 1 - x i ) ) + 2 n - 1 ( n - 2 ) f ( x 1 ) ( n N , n 3 ) for all x 1 , , x n X . Furthermore, we solve the stability problem for a given function f satisfying Δ f ( x 1 , , x n ) = 0 , in the Menger probabilistic normed spaces.

Citation

Download Citation

M. Eshaghi Gordji. H. Khodaei. Y. W. Lee. G. H. Kim. "Approximation of Mixed-Type Functional Equations in Menger PN-Spaces." Abstr. Appl. Anal. 2012 1 - 17, 2012. https://doi.org/10.1155/2012/392179

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1242.39033
MathSciNet: MR2922910
Digital Object Identifier: 10.1155/2012/392179

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top