Open Access
2012 On the Structure of Brouwer Homeomorphisms Embeddable in a Flow
Zbigniew Leśniak
Abstr. Appl. Anal. 2012(SI14): 1-8 (2012). DOI: 10.1155/2012/248413

Abstract

We present two theorems describing the structure of the set of all regular points and the set of all irregular points for a Brouwer homeomorphism which is embeddable in a flow. The theorems are counterparts of structure theorems proved by Homma and Terasaka. To obtain our results, we use properties of the codivergence relation.

Citation

Download Citation

Zbigniew Leśniak. "On the Structure of Brouwer Homeomorphisms Embeddable in a Flow." Abstr. Appl. Anal. 2012 (SI14) 1 - 8, 2012. https://doi.org/10.1155/2012/248413

Information

Published: 2012
First available in Project Euclid: 7 May 2014

zbMATH: 1288.54027
MathSciNet: MR2965439
Digital Object Identifier: 10.1155/2012/248413

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI14 • 2012
Back to Top