Open Access
2012 Approximate Riesz Algebra-Valued Derivations
Faruk Polat
Abstr. Appl. Anal. 2012(SI14): 1-5 (2012). DOI: 10.1155/2012/240258

Abstract

Let F be a Riesz algebra with an extended norm | | · | | u such that ( F , | | · | | u ) is complete. Also, let | | · | | v be another extended norm in F weaker than | | · | | u such that whenever (a) x n x and x n · y z in | | · | | v , then z = x · y ; (b) y n y and x · y n z in | | · | | v , then z = x · y . Let ε and δ > be two nonnegative real numbers. Assume that a map f : F F satisfies | | f ( x + y ) - f ( x ) - f ( y ) | | u ε and | | f ( x · y ) - x · f ( y ) - f ( x ) · y | | v δ for all x , y F . In this paper, we prove that there exists a unique derivation d : F F such that | | f ( x ) - d ( x ) | | u ε , ( x F ). Moreover, x · ( f ( y ) - d ( y ) ) = 0 for all x , y F .

Citation

Download Citation

Faruk Polat. "Approximate Riesz Algebra-Valued Derivations." Abstr. Appl. Anal. 2012 (SI14) 1 - 5, 2012. https://doi.org/10.1155/2012/240258

Information

Published: 2012
First available in Project Euclid: 7 May 2014

zbMATH: 1264.46035
MathSciNet: MR2975349
Digital Object Identifier: 10.1155/2012/240258

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI14 • 2012
Back to Top