Open Access
2012 Inequalities between Arithmetic-Geometric, Gini, and Toader Means
Yu-Ming Chu, Miao-Kun Wang
Abstr. Appl. Anal. 2012(SI12): 1-11 (2012). DOI: 10.1155/2012/830585

Abstract

We find the greatest values p 1 , p 2 and least values q 1 , q 2 such that the double inequalities S p 1 ( a , b ) < M ( a , b ) < S q 1 ( a , b ) and S p 2 ( a , b ) < T ( a , b ) < S q 2 ( a , b ) hold for all a , b > 0 with a b and present some new bounds for the complete elliptic integrals. Here M ( a , b ) , T ( a , b ) , and S p ( a , b ) are the arithmetic-geometric, Toader, and p th Gini means of two positive numbers a and b , respectively.

Citation

Download Citation

Yu-Ming Chu. Miao-Kun Wang. "Inequalities between Arithmetic-Geometric, Gini, and Toader Means." Abstr. Appl. Anal. 2012 (SI12) 1 - 11, 2012. https://doi.org/10.1155/2012/830585

Information

Published: 2012
First available in Project Euclid: 15 February 2012

zbMATH: 1229.26031
MathSciNet: MR2861493
Digital Object Identifier: 10.1155/2012/830585

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI12 • 2012
Back to Top