Open Access
2012 Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source
Pan Zheng, Chunlai Mu, Dengming Liu, Xianzhong Yao, Shouming Zhou
Abstr. Appl. Anal. 2012(SI11): 1-19 (2012). DOI: 10.1155/2012/109546

Abstract

We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear source ut=div(|um|p2ul)+uq, (x ,t)RN×(0,T), where N1, p>2 , and m, l, q>1, and give a secondary critical exponent on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove single-point blow-up for a large class of radial decreasing solutions.

Citation

Download Citation

Pan Zheng. Chunlai Mu. Dengming Liu. Xianzhong Yao. Shouming Zhou. "Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source." Abstr. Appl. Anal. 2012 (SI11) 1 - 19, 2012. https://doi.org/10.1155/2012/109546

Information

Published: 2012
First available in Project Euclid: 4 April 2013

zbMATH: 1250.35045
MathSciNet: MR2947766
Digital Object Identifier: 10.1155/2012/109546

Rights: Copyright © 2012 Hindawi

Vol.2012 • No. SI11 • 2012
Back to Top