Open Access
2009 The Tsirelson Space 𝒯(p) Has a Unique Unconditional Basis up to Permutation for 0<p<1
F. Albiac, C. Leránoz
Abstr. Appl. Anal. 2009: 1-6 (2009). DOI: 10.1155/2009/780287

Abstract

We show that the p-convexified Tsirelson space 𝒯(p) for 0<p<1 and all its complemented subspaces with unconditional basis have unique unconditional basis up to permutation. The techniquesinvolved in the proof are different from the methods that have been used in all the other uniqueness results in the nonlocally convex setting.

Citation

Download Citation

F. Albiac. C. Leránoz. "The Tsirelson Space 𝒯(p) Has a Unique Unconditional Basis up to Permutation for 0<p<1." Abstr. Appl. Anal. 2009 1 - 6, 2009. https://doi.org/10.1155/2009/780287

Information

Published: 2009
First available in Project Euclid: 16 March 2010

zbMATH: 1192.46002
MathSciNet: MR2576581
Digital Object Identifier: 10.1155/2009/780287

Rights: Copyright © 2009 Hindawi

Vol.2009 • 2009
Back to Top