Open Access
2009 Generalized Hyers-Ulam Stability ofGeneralized (N,K)-Derivations
M. Eshaghi Gordji, J. M. Rassias, N. Ghobadipour
Abstr. Appl. Anal. 2009: 1-8 (2009). DOI: 10.1155/2009/437931


Let 3n, and 3kn be positive integers. Let A be an algebra and let X be an A-bimodule. A -linearmapping d:AX is called a generalized (n,k)-derivation ifthere exists a (k1)-derivation δ:AX such thatd(a1a2an)=δ(a1)a2an+a1δ(a2)a3an++a1a2ak2δ(ak1)akan+a1a2ak1d(ak)ak+1an+a1a2akd(ak+1)ak+2an+a1a2ak+1d(ak+2)ak+3an++a1an1d(an) for all a1,a2,,anA. The main purpose of this paper is to prove the generalized Hyers-Ulam stability of the generalized (n,k)-derivations.


Download Citation

M. Eshaghi Gordji. J. M. Rassias. N. Ghobadipour. "Generalized Hyers-Ulam Stability ofGeneralized (N,K)-Derivations." Abstr. Appl. Anal. 2009 1 - 8, 2009.


Published: 2009
First available in Project Euclid: 16 March 2010

zbMATH: 1177.39032
MathSciNet: MR2516015
Digital Object Identifier: 10.1155/2009/437931

Rights: Copyright © 2009 Hindawi

Vol.2009 • 2009
Back to Top