Open Access
2009 Existence of Homoclinic Orbits for Hamiltonian Systems with Superquadratic Potentials
Jian Ding, Junxiang Xu, Fubao Zhang
Abstr. Appl. Anal. 2009: 1-15 (2009). DOI: 10.1155/2009/128624

Abstract

This paper concerns solutions for the Hamiltonian system: z˙=𝒥Hz(t,z).Here H(t,z)=(1/2)zLz+W(t,z), L is a 2N×2N symmetric matrix, and WC1(×2N,). We consider the case that 0σc((𝒥(d/dt)+L)) and W satisfies some superquadratic condition different from the type of Ambrosetti-Rabinowitz. We study this problem by virtue of some weak linking theorem recently developed and prove the existence of homoclinic orbits.

Citation

Download Citation

Jian Ding. Junxiang Xu. Fubao Zhang. "Existence of Homoclinic Orbits for Hamiltonian Systems with Superquadratic Potentials." Abstr. Appl. Anal. 2009 1 - 15, 2009. https://doi.org/10.1155/2009/128624

Information

Published: 2009
First available in Project Euclid: 16 March 2010

zbMATH: 1187.37086
MathSciNet: MR2581138
Digital Object Identifier: 10.1155/2009/128624

Rights: Copyright © 2009 Hindawi

Vol.2009 • 2009
Back to Top