Open Access
2008 On a Two-Variable p -Adic l q -Function
Min-Soo Kim, Taekyun Kim, D. K. Park, Jin-Woo Son
Abstr. Appl. Anal. 2008: 1-10 (2008). DOI: 10.1155/2008/360517

Abstract

We prove that a two-variable p -adic l q -function has the series expansion l p , q ( s , t , χ ) = ( [ 2 ] q / [ 2 ] F ) a = 1 , ( p , a ) = 1 F ( 1 ) a ( χ ( a ) q a / a + p t s ) m = 0 ( s m ) ( F / a + p t ) m E m , q F * which interpolates the values l p , q ( n , t , χ ) = E n , χ n , q ( p t ) p n χ n ( p ) ( [ 2 ] q / [ 2 ] q p ) E n , χ n , q p ( t ) , whenever n is a nonpositive integer. The proof of this original construction is due to Kubota and Leopoldt in 1964, although the method given in this note is due to Washington.

Citation

Download Citation

Min-Soo Kim. Taekyun Kim. D. K. Park. Jin-Woo Son. "On a Two-Variable p -Adic l q -Function." Abstr. Appl. Anal. 2008 1 - 10, 2008. https://doi.org/10.1155/2008/360517

Information

Published: 2008
First available in Project Euclid: 9 September 2008

zbMATH: 1149.11011
MathSciNet: MR2411043
Digital Object Identifier: 10.1155/2008/360517

Rights: Copyright © 2008 Hindawi

Vol.2008 • 2008
Back to Top