Open Access
26 September 2005 Correct selfadjoint and positive extensions of nondensely defined minimal symmetric operators
I. Parassidis, P. Tsekrekos
Abstr. Appl. Anal. 2005(7): 767-790 (26 September 2005). DOI: 10.1155/AAA.2005.767

Abstract

Let A0 be a closed, minimal symmetric operator from a Hilbert space into with domain not dense in . Let A^ also be a correct selfadjoint extension of A0. The purpose of this paper is (1) to characterize, with the help of A^, all the correct selfadjoint extensions B of A0 with domain equal to D(A^), (2) to give the solution of their corresponding problems, (3) to find sufficient conditions for B to be positive (definite) when A^ is positive (definite).

Citation

Download Citation

I. Parassidis. P. Tsekrekos. "Correct selfadjoint and positive extensions of nondensely defined minimal symmetric operators." Abstr. Appl. Anal. 2005 (7) 767 - 790, 26 September 2005. https://doi.org/10.1155/AAA.2005.767

Information

Published: 26 September 2005
First available in Project Euclid: 3 October 2005

zbMATH: 1104.47026
MathSciNet: MR2202182
Digital Object Identifier: 10.1155/AAA.2005.767

Rights: Copyright © 2005 Hindawi

Vol.2005 • No. 7 • 26 September 2005
Back to Top