Open Access
Translator Disclaimer
29 June 2004 The operator $B^*L$ for the wave equation with Dirichlet control
I. Lasiecka, R. Triggiani
Abstr. Appl. Anal. 2004(7): 625-634 (29 June 2004). DOI: 10.1155/S1085337504404011

Abstract

In the case of the wave equation, defined on a sufficiently smooth bounded domain of arbitrary dimension, and subject to Dirichlet boundary control, the operator B*L from boundary to boundary is bounded in the L2-sense. The proof combines hyperbolic differential energy methods with a microlocal elliptic component.

Citation

Download Citation

I. Lasiecka. R. Triggiani. "The operator $B^*L$ for the wave equation with Dirichlet control." Abstr. Appl. Anal. 2004 (7) 625 - 634, 29 June 2004. https://doi.org/10.1155/S1085337504404011

Information

Published: 29 June 2004
First available in Project Euclid: 7 July 2004

zbMATH: 1065.35171
MathSciNet: MR2084941
Digital Object Identifier: 10.1155/S1085337504404011

Subjects:
Primary: 35LXX , 35Qxx
Secondary: 93-xx

Rights: Copyright © 2004 Hindawi

JOURNAL ARTICLE
10 PAGES


SHARE
Vol.2004 • No. 7 • 29 June 2004
Back to Top