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1. Introduction and preliminaries

Topological properties of the solution set of Cauchy problems for differential in-
clusions have been investigated by several authors [16], [24], [14], [23], [10], [19], [3],
[15]. Less attention has been, so far, devoted to analogous questions for boundary
value problems.

In the present paper we consider boundary value problems of the type

1 ’
BY) { z"(t) € F(t,z(t),z'(¢)),
z(0)=z(1) =0,
where F is a multifunction from I x R? x R9, I = [0, 1], to the non-empty compact
subsets of R?. If F is Lipschitzean, we prove that the solution set Sg of (BV)
is a retract of the Sobolev space W2!(I,R?). In particular, Sr is contractible
and hence arcwise connected. Whenever F is convex valued and Lipschitzean, Sg
is a retract also of C1(I,R?). Finally, in the nonconvex case, under a continuity
assumption on F, it is proved that Sg is non-empty.

To establish the retraction property of Sg, when F' is Lipschitzean, we use

some recent results due to Ricceri [21] and Bressan, Cellina and Fryszkowski [4],
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who have studied the existence of a retraction of a Banach space X onto the set of
the fixed points of a contractive multifunction from X into itself. Developments and
applications of such ideas can be found in Rybiriski [22]. The nonemptiness of Sg,
when F is continuous, is obtained as in Papageorgiou [18], by a technique based on
a selection theorem for decomposable valued multifunctions of Antosiewicz-Cellina
type [1], (9], [5].

Unlike the nonconvex case, boundary value problems of the type (BV) with F
compact convex valued have been studied by many authors. We mention, among
others, Pruszko [20], also for a historical outline and an extensive list of references,
and Erbe and Krawcewicz [7] and Frigon [8], who use an approach based on the
topological transversality method of Granas, Guenther and Lee [11].

Let X be a metric space with distance dx. For £ € X and A a non-empty
subset of X, we set dx(x, A) = infoc s dx(z,a). We denote by K(X) the space of
all non-empty closed bounded subsets of X equipped with the Hausdorff metric

Dx (A, B) = max {sup dx (b, A), sup dX(a,B)} , A,B € K(X).
beB a€A

Moreover C(X), where X is a normed space, denotes the space of all non-empty,
convex, closed, bounded subsets of X endowed with the Hausdorff metric Dx. By
Bx(z,r) (resp. Bx(z, r)) we mean an open (resp. closed) ball in X with center
z € X and radius r > 0 (resp. r > 0).

 Let X, Y be metric spaces. A multifunction F : X — K(Y) is said to be
Hausdorff lower (resp. upper) semicontinuous if, for every £ € X and € > 0, there
exists a § > 0 such that F(zo) C {y € Y | dy(y, F(z)) < €} (resp. F(z) C {y €
Y |dy(y, F(zo)) < €}) for every = € Bx(zo,6). F is called Hausdorff continuous if
F is Hausdorff lower and upper semicontinuous. A multifunction F : T — K(Y),
T and interval of R, is said to be measurable if for every closed subset C of Y, the
set {t € T | F(t) C C} is Lebesgue measurable. We refer to Castaing and Valadier
[6] for further properties of measurable multifunctions.

To study problem (BV) we introduce the following assumptions about F'.

Let F : I x R? x R? — K(R9), I = [0,1], be a multifunction.
We say that F' satisfies (L) if:

(i) For every (z,y) € R? x R? the multifunction ¢ — F(t,z,y) is measurable
and satisfies

Dr4(F(1,0,0),{0}) <m(t) for te€l,

where m : I — R is non-negative and integrable.

(ii) For every (t,z1,11), (¢,22,%2) € I x R? x R? we have

Dra(F(t,z1,41), F(t,72,92)) < alzy — y1| + blz2 — 2],
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wherea>0,b>0anda+b=k < 1.

We say that F satisfies (C) if:

(i) For every (z,y) € R? x RY the multifunction ¢t — F(t,z,y) is measurable
and satisfies

Dr«(F(t,z,y),{0}) < m(t), for every (t,z,y) € I x R x RY,

where m : I — R is non-negative and square integrable.
(ii) For ¢ € I a.e. the multifunction (z,y) — F(t,z,y) is Hausdorff continuous.

Suppose that F satisfies (L) or (C). A function z : 7 — RY is said to be a
solution of the boundary value problem (BV) if: (j) z is absolutely continuous with
2(0) = z(1) = 0, (jj) 2’ is absolutely continuous, and (jjj) z”(t) € F(t,z(t),z'(t)),
t € I a.e.: The set of all solutions of (BV) is called the solution set of (BV) and
denoted by Sg.

The above definition of a solution remains valid when F is, in particular, single
valued.

Let I = [0,1]. We denote by C(I,R9) (resp. C(I, R7)) the Banach space of all
continuous (resp. continuously differentiable functions) = : I — RY endowed with
the norm

lzlc = max|e@®)]  (resp. |lzllo: = max{|jzllc, |l’|lc}).

As usual, L'(I,R?) (resp. L*(I, R9)) is the Banach space of all (equivalence classes
of) integrable (resp. square integrable) functions z : I — R4 equipped with the
norm ||z, = f; |z(£)|dt (resp. Izl = f; [z()[*dt). Furthermore, W21(1, R9)
denotes the Sobolev space of all functions z : I — RY such that z and 7’ are
absolutely continuous (thus, with z” € L(7,R9)), endowed with the norm

l@llwza = llzl|zs + llz'l|z2 +f|2” | 1.

We recall that a set K C L!'(I,R9) is said to be decomposable (see Hiai and
Umegaki [12]) if uyxs + vxr\s € K whenever u,v € K and J is any measurable
subset of I. Here x4 stands for the characteristic function of a set A C I. The
family of all non-empty, decomposable, closed, bounded subsets of I.! (I,R9) is
denoted by Dri(s re)-

Let Z be a Hausdorff topological space. A subspace X of Z is said to be a
retract of Z if there is a continuous map r : Z — X satisfying r(z) = z for every
z € X. Any such map r is called retraction of Z onto X. Clearly, if X is a retract
of Z, then X is closed in Z. A metrizable space X is said to be an absolute retract
(for metrizable spaces) if for every homeomorphism A mapping X onto a closed
subset h(X) of a metrizable space Y, the set h(X) is a retract of V. We recall that
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every retract of a convex set of a normed space is an absolute retract (see Borsuk
2], p. 85).

2. Topological properties of Sr

THEOREM 1. Let F : I x R x R? — K(R?) satisfy (L). Then the solution set
Sp of the boundary value problem (BV) is a retract of W>(I,RY).

PROOF. For u € L(I,R9) we denote by z(u) : I — RY the solution of the
boundary value problem

(P) { (1) = u(t)

z(0) = z(1) = 0.

This solution exists, is unique, and is given by

i T 1
(2.1) z(u)(t) = /; (/0 su(s)ds —/ (1 — s)u(s) d.s) dr, tel.
For u € L*(I,RY), set
(2.2) U) = {o € L}({I,R") | o(t) € F(t,z(u)(t),z' (u)(t)), t €I ae.}.

Clearly U(u) is a non-empty decomposable closed subset of IL}(I,R%). From
F(t,z(uw)(t), =’ (u)(t)) C F(t,0,0) + Bra(0, Dro(F (¢, z(u)(t), 2'(w)(2)), F(t,0,0)))
and assumption (L), it follows that U(u) is bounded in LY(I,R?). Thus (2.2) defines
a multifunction I : L*(I,R?) — DL Re)-

For every uy,uz € L'(I,R?) we have

(2.3) Dps (U(ur), U(uz)) < kllug — uz|zs,

where k is the constant occurring in (L). Indeed, let u1,us € L'(I,R). Let z(u1)
and z(u2) be the solutions of (P,,) and (Py,), respectively. From (2.1) we have

(24) o) - z(w2)lc < o —uzllzs,  ll7'(ur) — 7' (ua)lle < llua — ueflz
Let o1 € U(u;) be arbitrary. Since the multifunction ®: I — K(RY) given by
B(t) = F(t, o(u2)(t), &' (uz)(£)) N Bre(01(t), dra(01(2), F (1, 2(u2)(2), 2" (u2) (1)),
for ¢t € I is measurable, there exists o3 € U(uz) satisfying

(2.5) |01(2) = 02(8)] = dra(01(8), F(t, 2(u2)(2), &' (u2)(2))), t €T ae.
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By virtue of (2.5), assumption (L) (if), and (2.4) we have:
lox = all = [ dne(o1(0), Pt (0a) 1), 2/ )t
< [ Do (Pt 5(0)), 5/ (u2)(0), (1 (02)(0), ' (w0t
< [ (@lafus)(®) - ()] + Ha'(m)(8) - o' (ua) )t

< kfluy — ugl| s
Hence dp1 (o, U(uz)) < kljuy — usl|zr and thus, as o € U(y,) is arbitrary,

sup dpi(o1,U(us)) < kllur — uz||z1.
o1€U(u1)
Combining this with the analogous inequality obtained by interchanging the roles
of u; and uy gives (2.3). :

Put Fix(#) = {u € L}(I,RY) | u € U(u)}. By a result of Nadler (17], Fix(U)
is a non-empty closed subset of L'(I,R2). By a theorem of Bressan, Cellina and
Fryszkowski [4] the set Fix(U) is a retract of L'(1,R?). Hence there exists a con-
tinuous map 7 : L'(I, R?) — Fix(i) satisfying r(u) = u for every u € Fix(i{). For
x € W2(I,R?) define Rz : I — R? by

t s opr 1
(26) (Rz)(t) = /0 ( /0 sr(2")(s) ds — /T (1 - s)r(z")(s) ds) dr,  tel
Clearly, Rz coincides with the solution of the boundary value problem
{ y"(t) = r(z")(¢)
y(0) =y(1) =0.
As r(z") € Fix(U), we have r(z") € U(r(z")) and thus
(Rz)"(t) = r(a")(t) € F(t,(Rz)(t),(Rx)'(t)),  telae

Since, in addition, Rz and (Rz)' are absolutely continuous and (Rx)(0) = (Rz)(1)
=0, it follows that Rz € Sr. Thus, denoting by R the map which associates with
each z € W21(I,R9) the function Rz given by (2.6), we have:

R:W>Y(I,R?) - Sp.

The map R is continuous. In fact, let zq,z € W1, R?) and e > 0 be arbitrary.
From (2.6), by simple calculations, we have

IRz — Rxollwaa < 3||r(z”) — r(zf)]| L1

Take 6§ > 0 so that ||r(u) — r(z{)||L1 < €/3 for every u € Bpi(zg,6). Let z €
By2.1(z0,6) be arbitrary. As z” € Bpi(z{,6) we have |[r(z") — r(zg)ll < &/3,
and thus [|Rz — Rzgll21 < e. Hence R is continuous.
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For each £ € Sr we have Rz = z. Indeed; let z € SF be arbitrary. Put u = z”.
Denoting by y(u) the solution of (P,) we have y(u) = z, and so u(t) = z"(t) €
F(t,z(t),2'(t)) = F(t,y(u)(t),y (u)(t)),t € I a.e. Hence v € U(u), which implies
r(u) = u and thus, r(z"”) = z”. Consequently, for each ¢ € I,

(Rz)(t) = /Ot (/OT sr(z")(s)ds — /;1(1 - s)r(a:")(s)ds) dr

= /ot (/OT sx'(s)ds — [rl(l —3)z"(s) ds) dr = z(t),

that is Rz = z. It follows that R is a retraction of W>!(I,R?) onto Sr. This
completes the proof.

3. Continuation

THEOREM 2. Let F : I x R? x R? — C(RY) satisfy (L), where the function
m : I — R is square integrable. Then the solution set Sr of the boundary value
problem (BV) is a retract of C*(I,R9).

PRrooF. For y € C1(I,R9) we set
(3.1) Uly) = {u e L'(I,R?) | u(t) € F(t,y(t),y'(t)), telael}

Clearly U(y) is a non-empty, convex, closed and bounded subset of LY(1I,R9). For
y € CY(I,RY) we define

(3.2) F(y) = {z(w) | v € U(y)}.

Here, for u € U(y), z(u) denotes the solution of (Fy).

F(y) is a non-empty, convex and compact subset of C'(I,R?). It is evident
that F(y) is non-empty and convex. To show that F(y) is compact, consider an
arbitrary sequence {z,} C F(y). Let {un} C U(y) be such that z, = z(u,),n € N.
Since, fort € I a.e.,

un(t) € F(£,0,0) + Brq(0, Dre(F(£,0,0), F(t,y(t), ¥ (t))))
C Bra(0,m(t) + aly(t)| + bly/ (t)]);

where the function ¢ — m(t) + aly(t)| + b|y’(¢)| is square integrable, there exists a
subsequence, say {uy}, which converges weakly in L*(I, R?) to some u € L2(I,R9).
Clearly, v € L*(I,R?) and {u,} converges to u weakly in LY(I,R9). By Mazur's
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theorem [13] it is easy to see that u € U(y). Now, forneNand t e J , we have:

(3.3) (un)(8) — ) (t) = fo t ( /0 " s(un(s) - u(s)) ds) ir

- [ t ( / (1 8)(atn(s) — u(s))ds) dr

(3.4) z'(un)(t) — 2’ (u)(t) =_/0 s(un(s) — u(s))ds
- / (1= 5)(un(s) — u(s)) ds.

Since {u,} converges to u weakly in L'(I,R?), from (3.3) and (3.4) it follows that
{z(un)} and {z'(un)} converge in C(I,R9) to z(u) and z'(x), respectively. Hence
{z(un)} converges to z(u) in C1(1,R9). As z(u) € F(y), the set F(y) is compact,.
Thus (3.2) defines a non-empty, convex, compact valued multifunction

F : CY(I,RY) - C(CY(I, RY)).
For every y1,y2 € C*(I,RY) we have
(3.5) Dcr (F(y1), Fy2)) < kllys — v2llon,s

where k is the constant occurring in (L). Indeed, let y1,y2 € C(1, R?). Let 2, €
F(y1) be arbitrary, thus 21 = z(u;) for some u; € U(y,). As in the proof of
Theorem 1, take us € U(y,) satisfying

(3.6) [u1(t) — u2(t)| = dre(ur (), F(t, y2(t), 45(2))), teTae.,

and set zz = z(uz). Clearly, z; € F(y;). Using the representation of z(u1) and
z(uz) given by (2.1), by simple calculations, for every ¢ € [ , We have:

|z (u1)(t) — z(u2)(t)|
t 1
= )(t — 1)/0 s(u1(8) —ua(s))ds — t‘/t- (1—5)(ui(s) - uz2(s))ds

t 1
< /0. |u1(s) — ua(s)| ds +/t |u1(8) — uz(s)|ds = /I|u1(s) — ua(s)| ds.
From this, using (3.6) and assumption (L) (ii), for every ¢ € I we obtain:
o)(8) = 2ua)(0) < [ dia (s (2), F 100, w01t
S /IDRA (F(tayl (t)ayi(t))1 F(t,y2(t)1 y;(t)))dt

< / (aly(8) — 2 (8)] + Blu(¢) — v (&) )t
I

< kllyr — 2l -
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Consequently ||z1 = z2|]|c < k||y1 —y2llc1. Likewise one can show that [|2] — z3|lc <
k||lyr — y2llc1. Hence, |21 — 22llcr £ k|lyr — y2llcr- A fortiori, dei(z1, Fly2)) <
k|lys — yz||cr and thus, as z; € F(y1) is arbitrary,
sup do1 (21, F(y2)) < kllyr — v2llcr-
z21€F (y1)
From this and the analogous inequality obtained by interchanging the roles of y;
and y; we obtain (3.5).

Put Fix(F) = {y € C*(I,R?) | y € F(y)}, and observe that Fix(F) is a non-
empty closed subset of C'(I,R?). By a result of Ricceri [21] F(y) is a retract
of CY(I,R9). It is routine to show that Fix(F) = Sp. Hence Sr is a retract of
CY(I,R9) and the proof of the theorem is complete.

REMARK 1. By Theorem 1 (resp. Theorem 2), the space Sg with the W21(I,R9)
(resp. C*(I,R7)) metric is an absolute retract.

REMARK 2. Theorem 2 is no longer true if F' is not convex valued. To see this,
denote by S the solution set of the boundary value problem

{ () € {-1,1},

(3.7 z(0) = z(1) = 0.

Since S is not closed in C*(I,R), the set S cannot be a retract of C*(I,R). On
the other hand, from Theorem 1, S is a retract of W2!(I,R) and so S is closed in
wW2i(I,R).

4. An existence result

THEOREM 3. Let F : I x R? x R? — K(RY) satisfy (C). Then the solution set
Sr of the boundary value problem (BV) is non-empty.

PROOF. For u € L(I,RY) denote by y(u) the solution of (P,). Set

Q ={y € C'(I,R)|y = y(u) for some measurable u with
|lu(®)| < m(t), t € I a.e.}.

Clearly Q is non-empty and convex. Moreover (2, endowed with the C'(I, R9)
metric, is a compact space. To see this, let {y(u,)} C 2 be an arbitrary sequence
where, for each n € N, u, : I — RY is measurable and |u,(¢)| < m(t), t € I a.e. As
m is square integrable, there is a subsequence, say {u,}, which converges weakly
to some u in L?(I,RY) and so also in L}(,R?). By the Mazur theorem [13] one
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has |u(t)] < m(t), t € I a.e., and so y(u) € Q. By using the representation of
the solution of (F,) furnished by (2.1), it follows that {y(u,)} converges to y(u) in
C'(1,R9), proving that Q is compact.

For y € Q, let U(y) be given by (3.1). As U(y) is a non-empty, decompos-
able, closed, bounded subset of L!(Z,R9), (3.1) defines a multifunction & :  —
Dri(1re)- It is routine to verify that U is Hausdorff lower semicontinuous. By
virtue of Theorem 3 of Bressan and Colombo [5], there exists a continuous function
o : Q@ — L(I,R?) satisfying

(4.1) o(y) € U(y) for every y € Q.

For y € 2, let z(y) : I — R? denote the solution of the boundary value problem

{ 27(t) = o (y)(¥)
z(0) = z(1) = 0.

This solution exists, is unique, and is given by

42) o)) = /0 t( /0 " s0(y)(s)ds — / 1(1—s)a(y)(s)ds) dr, tel

Clearly z(y) € Q. Denote by T': Q — Q the map defined by Ty = z(y), y € Q. T
is continuous. Indeed, let yo,y € . From (4.2), we have

1Ty = Tyolle < llo(y) - o(yo)llz:,
I(Ty)' = (Tyo)'llc < llo(y) — o(wo)llz1

Hence
1Ty — Tyoller < llo(y) — o (wo)llLrs

which implies that T is continuous, for ¢ : § — LY(I,R9), is so. By Schauder’s
fixed point theorem, there exists y € Q such that y = Ty, thus

y(t) = /O.t (/0r so(y)(s)ds — /rl(l —8)a(y)(s) ds) dr, tel.

Since y and y’ are absolutely continuous, y(0) = y(1) = 0 and, by virtue of (4.1)
and (3.1),

¥'(t) =o(y)(t) € F(t,y(t),y'(1), telae,

it follows that y is a solution of the boundary value problem (BV). Thus Sr is
non-empty, completing the proof.
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