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0. Introduction

The classical degree theories and their Leray-Schauder extensions to infinite
dimensions have been very useful in the study of nonlinear problems. The presence
of symmetries in such problems, which restricts the class of maps and sets, gives a
richer structure to the possible degrees. In our previous papers [6] and [7] we have
defined a degree theory for such maps. In particular, we have studied and applied
the degree for the case of a S'-action.

Let E and F be two Banach spaces and I be a compact Lie group acting linearly,
via isometries, on both of them. Let Q be a bounded open invariant subset of E
and f be an equivariant map defined on Q with values in F, that is, f(yx) = 7f(z),
for all z in © and vy in T', ¥ representing the action on F.

If f(z) # 0 on 012, then the I-degree is constructed as follows: take a large ball
B centered at the origin and containing  and let f: B — F be a I'-equivariant
continuous cxtension of f, with the usual compactness properties. Let N be a
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bounded, invariant, open neighborhood of 892 such that f(m) # 0on N. Let
¢ : B — [0,1] be an invariant Urysohn function such that ¢(z) = 1 if z is outside
QUN and ¢(z) =01in Q. Let F: [0,1] x B — R x F be the map defined by

F(t,z) = (2t +2¢(z) — 1, f(2)),

where I' acts trivially on both [0,1] and R.

Since F(t,z) is zero only if f (z) =0,z in Q, and t = 1/2, F can be regarded
as a T-equivariant map from S%, the boundary of [0,1] x B, into S¥ ~ R x F\{0}.

The I'-degree of f, degp(f;€2), is defined to be the I-equivariant homotopy class
[ﬁ]p of F considered as an element of the I'-equivariant homotopy group of spheres
L (SF).

As we proved in [6], this degree has all the properties of the Brouwer-Leray-
Schauder degree and reduces to it when I is trivial. In the infinite dimensional
case we shall assume that E = V x E and F = W x E, where V, W are finite
dimensional I'-spaces, and f(z,y) = (fi(z,¥),y — f2(z,¥)), where f; is compact.
In this case IIL; (S¥) is the inductive stable limit of HEVXV(SWXV), with V any
finite dimensional invariant subspace of E.

The present paper is devoted to the study of these equivariant homotopy groups
of spheres in the case of an abelian group I'. In part II we shall compute the degree
and apply it to different examples: bifurcation, existence of solutions with different
symmetry type and symmetry breaking.

In order to study II5, (8%), we show that for each isotropy subgroup H, there
is a fundamental cell in B¥, of dimension dim V¥ — dim(I'/H), which generates
BH and where the action is free. If this dimension is less than dim W then we
show, in Section 3, that any I'-map has an equivariant extension to B¥, while if the
dimensions are equal, then there is an obstruction, an integer which is the degree
of an extension of the map to the boundary of the cell.

If T’ preserves orientations, we prove in Section 4 that this obstruction is unique
and well defined. We give, under a suspension hypothesis, conditions under which
the obstruction is independent of the previous extensions.

In Section 5, we decompose Hgv (SY) into subgroups corresponding to Weyl
groups of fixed dimension k£ (Theorems 5.1, 5.2 and 5.3). If for each such isotropy
subgroup H, the dimension of its fundamental cell is less than or equal to dim W#,
then (Theorem 5.1) the subgroup is a product of Z’s, one for each H where one
has equality. This result enables us to characterize the I'-degree if dim V¥ <
dim WH + 1, for all H.

By using subgroups of I, we study in Section 6 the relationship between the
different possible equivariant degrees and we give an explicit relation, if dim VH =
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dim WH | between these equivariant degrees and the usual degrees of restrictions of
the map to isotropy subspaces.

In Section 7, we give explicit generators, in terms of invariant polynomials, for
the different pieces of the equivariant homotopy groups.

Section 8 is devoted to a complete characterization of IS, (SW) when k = 1.
In this case the torsion part of this group is a finite group generated by explicit
maps and relations.

The final section gives an equivariant suspension theorem which is necessary for
the extension to infinite dimensions. We also prove that any element in IIL, (SW)
is the I'-degree of a map on {2 C V, in the cases k=0or 1 or dimI'/H = k.

The ideas behind our paper are those of equivariant obstruction theory and
equivariant extension of maps. There are many other papers which have exploited
these ideas, usually with a strong use of algebraic topology. Our approach is direct
and based on explicit computations. If dim V# = dim WH, then we recover the
results of [16], and, for the case V = W, those of [9], [14] and [4]. For this case we
give “mod-p” or Borsuk-Ulam type results for the computation of the usual degree
for equivariant maps (see [1], [13], [10] and [15]). The idea of a fundamental cell is
also used in [3] in the context of equivariant extensions.

If V = W x R*, Geba and coworkers have defined, in [5] in the case of a general
T, a degree which corresponds to the “free part” of It (%), that is, to the copies
of Z’s. This degree is defined first for perturbations, normal maps, which have their
zeros of a fixed isotropy type, with dim N(H)/H = k. We show, in Section 5, that
this degree is included in ours.

1. Irreducible Representations of Abelian Groups

Let T' be an abelian group, hence I' & T™ X Zy,, X ... X Z,, generated by
(¢1,.-- yn) € T™ and v; a cyclic element of order m; (see [16, p. 25]). Then it
is known that the irreducible real representations of I" are either two dimensional,
with an induced complex structure, or one dimensional with an action of Z; (see
[16, Prop. 8.8, p. 110]).

Now, let V be an irreducible representation of I' and let X € V\{0}. Let I'x =
H be its isotropy subgroup and W (H) = I'/H be its Weyl group. Then, W (H) acts
freely on V\{0} = V¥\{0} (see [2, p. 90]). Hence, from [2, Thm. 8.5, p. 153}, either
W(H) = S! if dim W(H) > 0, since W(H) is abelian, or (see [2, Thm. 8.2, p. 149))
W(H) = Z,. In this preliminary section we would like to derive these results
directly since they will be used later on.

The action of ' on V is of the form expi(} njp; + 2w k;l;/m;), where
p; € [0,2n], n; € Z, 0 < k; < m; — 1 is fixed and I; varies from 0 to m; — 1.
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If dimV = 1, then n; = 0, and ) 2k;l;/m; is an integer, for all I;’s. Thus, if
we take I; = 0 except for one index jo and lj, = 1, then 2k;/m; is an integer, m;
is even and k; is either 0 or m;/2. The action of I reduces to (—1)%%, where the
sum is over those j’s such that k; = m;/2.

Let H =T'x. Since dim V' = 1, it follows that H contains T™, Z,, if m; is odd
or k; # m;/2, and all the elements with 3" ; even.

IfdimV =2, then v € H if 3 njp; + 27 k;lj/m; = 2k, for some integer k.
There are then three cases: either n; = 0 for all j, or n; # 0 for some j and k; =0,
and the general case.

a) If n; = 0 for all j’s, hence H > T, then EEjlj /M; is an integer, where Ej
and m; are relatively prime. Let m be the least common multiple (L.c.m.) of the
m;’s, with ﬁlj = ’Fﬁ/pj. Then Ekjlj/ﬁlj = ijljpj/ﬁl.

LEMMA 1.1. There are (13,...,13) = lo such that Z%jl‘g/ﬁlj = 1/m [27] and
any other element of W(H) gives an action of the form a/m. for some o € {0,
m—1}.

PROOF. If k = 1, then kI /™ is an integer if and only if ! is a multiple of n,
e2mikl/™ are @ roots of unity, hence the result is clear.

Assuming the result true for (I1,...,Ix), let M be the l.c.m. of (fy,...,mk)
and m be the l.c.m. of M and g1,

k;l; /s + kg = ao/f+ kMg,

M=

1

W,
Il

where oy is given by the induction hypothesis in such a way that
k —_—
Y kld/m;=1/m  and ;= oold.
=1

One is then reduced to two “modes” I; and l3. From the one mode case,
k;l;/m; = 1;/i; with 0 <1; < fi; — 1. Thus, one has to consider I /i, + Iz /7.
Now, m = p17; = paima, with p; and p, relatively prime. Thus, there are integers
o, ag such that ai1p; + aspes = 1, where o and ao have opposite signs. Assume
that ay > 0.

If @ > 1y, divide oy by iy and get a; = kifg + Iy, 0 < I} < 7y; then
pili + aapz = 1 — kyin. Similarly, —az = kg + B2, 0 < ko, 0 < B3 < Mg
—ag = (k2 + 1)fig — I, 1 < Iy < g and pyly + palz = 1 + (kz + 1 — ky ), defining
10 and 19 (if B, = 0, take I = 0).

For any other pair (I3,12), we have Iy /iy + la /g = (p1h + paly) /= (prly +
pala) (0 /iy + 18/7y). Hence, W(H) = Zz. o
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b) For the action of T" given by ) n;jp;, let ng be the largest common divisor
of the |n;|’s, let 7; = n;/np, and define ¥ = (3_njp;)/no. Then ¥ goes from
=21}, |[n;] to 2w 3, |n;|, where 7, is the sum over all negative n;’s and ), the
sum over all positive n;’s. One may also change ; to 2m — ¢; whenever n; is
negative and assume n; > 0. If N = )" |n;|, the congruence 3 n;p; = 0[27] gives
N hyperplanes in T™ and H = (T™ ! X ZN) X Ly, X - X L, With W(H) = §1 =
T/Zy. If ngyp = N®, then ®, belonging to (0,27 /N), generates W (H). m|

c) Finally, in general, one may write Y n;@; + 27 )" kil /m; as noy + 2na/m,
with 0 € & < ™, Ny = N® and & belonging to [0,2x/N]. The relation N® +
2ra/m = 2km will give @ = (3 njp;)/N = 2kn /N + 2wa/(MN), which represents
mN different parallel hyperplanes in T™. Thus, H = T"™! X Zzy and W(H) &
Sl = T/Z;;l N- O

In the rest of the paper, we shall assume that the representation V of I has a
fixed orthogonal decomposition into irreducible representations (real and complex)
in such a way that any X in V can be written as X = ) x;e;, where z; € C if
W(le,) 2 Z, or S*, p> 2, or z; € Rif W(I'e,) = {e} or Z,.

Then yX = } zjve; and vX = X gives ve; = ¢; if z; # 0. (ye; =
eiNi®+2me; /(M;iNi)e, for the complex case, or +e; in the real case.) Hence, ['x =
T;, where the intersection is over those j’s such that z; # 0. Thus, W(T.,) <
W(Tx).

In particular, if dim W(I'x) = 0, then W(T,) is a finite group and I, contains
T™. In this case I'x also contains 7™, that is, X belongs to VT . Conversely, if X
is fixed by T™, then W(I'x) is a factor of Z,, X - -+ X Zy,, and hence is finite.

We have seen that the set {X € V | W(I'x) < oo} is the subspace V7.

2. The Fundamental Cell Lemma

Let V be a representation of I' and Hy be a subgroup of I'. Decompose V as
@ V;, with V; = C or R and generated by e; with isotropy subgroup H;. Write X
in V as ) ] zje;. Consider C = {X € V | |z;| =1}, a torus in V.

Now, ij_l = HoNH; N...NH;_; acts on V;\{0} with isotropy subgroup
ﬁj = ﬁj_l N H; and ij_l/ij acts freely on V;\{0}. Thus, as in the first part,
this Weyl group is isomorphic either to S, to {e}, or to Z,, p > 2. Let k; be
the cardinality of this Weyl group. (k; = oo means that the group is S, while
k; = 1 means that ij_l = ﬁj. If k; = 2 and V; is complex, then V; splits into
two real representations of H;_1/H; & Zy. If V; is real then k; = 1 or 2.) Let
H=H;NH;N...N H, be the isotropy type of C.
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with k; > 1 and z; complex, or Argz; = 0 or 27/k; when 1 < k; < oo and z;
complex. Now, if z; = 0 for some 7, then from the minimality of the intersection,
the corresponding isotropy subgroup strictly contains H and, for z; = 0 and by
Gleason’s lemma for |z;| < €(1 — 1/k;), one has the given equivariant extension
of F.

The piece of OC corresponding to Argz; = 0 for all j’s (there are § < 3 of
these) has dimension r+25—3+k < dim W# if § > 0. Thus, one has a continuous
non-zero extension on it. If 8 = 0, then there is no need to consider that piece of
acC.

It remains to consider the rest of 8C, that is, when ¢; = Argz; is 2r/k; with
]_. < kj < 00.

Let A be the 5-torus {p; € [0,27/k;] = I;, j such that 1 < k; < oo, z;
complex}. The extension to 0Ajz and, eventually, to Az is by induction on 5. If
s = 1, then Az = I, and one already has an extension to ¢, = 0. The group

H, 4 /H acts on z, and there is a unique 7y, in it which sends ez"”/ k= 2, onto
2, and which either leaves untouched z; (with Argz; = 0) or moves z; on 9C.
For e?*/kn |z, | define F(z1,... e /% |z,|,...) = %, F(21,... ,|2zn],...). Further-
more, if r + 25+ k < dimW¥#, then one may choose any continuous non-zero
extension of the preceding F to ¢, in I, obtaining a non-zero extension to C,
with the right symmetry property on 8C. By letting T'/H act on C one obtains a
I'-equivariant extension to BH.

Assume now that one has obtained an extension for the last 5— 4 phases in Ag,
that is, for Ag_; = {p; =0forj=1,...,4;p; €[ for j=i+1,...,5}. (Thereis
a slight abuse of notation here: z; are not necessarily consecutive variables, but the
phases @; in Az are ordered. Recall that the action of ij preserves the variables
in C which have zero argument and moves harmlessly those for which &; = 1.).

The induction step will be for ; =0, j =1,...,i—1, ¢; € I; and w; € I,
j > 4. Now, if @; = 27 /k;, then H;_ 1/H leaves 1nvarlant w4, for j <i—1, and one
has ; in this group which takes |2;|e?™/*: into || and (@11, . .. » ¢3) into another
element of that face of Ag. Extend F for Argz; = 2m/k; by using the action of v;,
obtaining a non-zero map on the front face (; = 27/k;) from the back face (¢; = 0)
of Ag_; 1. Recall that Ag_;;; gives an (r + k + 25 — (i — 1))-dimensional ball in
9C, for ¢ going from §+ 1, for Ag = {¢; = 0 for all j's}, to i = 1 for Ag, giving C.
Thus, except for the last step 7 = 1, one always has a non-zero continuous extension
for a map defined on the boundary of a ball to the ball itself. The extension has to
preserve the symmetry imposed by the action of I'/H on 4C.

For the face ¢;11 = 0, one starts with the edge ¢; € I;, ¢; = 0, j > i and
any continuous extension of the prev1ous map. The map for the edge with ¢g =
2m/ks is given by the action of Hz_;/H; (which leaves fixed all the other phases).
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The dimension argument will give a non-zero continuous extension to the two-
dimensional torus @; € I;, w3 € I;. This extension is reproduced by the action of
ﬁg_z/ﬂg_l to the set ¢; € I;, w5z € Is, ps—1 = 27/ksz—1. The dimension argument
will permit extending to y; € I, ws—1 € Is_1, v5 € I5. A new induction argument
will give the extension to the face ;41 = 0, which respects the symmetry on
its boundary. The extension to ¢;1+1 = 27/k;41 is given by the action of fIi/fIHl.
Then one proceeds to the face ¢;12 = 0 and so on. The complete argument requires
a sequence of inductions similar to the one given in (7, p. 32] and is left to the reader.

In order to complete the induction argument, one needs to see what happens
when adding a new variable z,41 in such a way that Hy n...N H, = H and
HiN...NHyy = H (one is still in V¥). Thus, H,1 = Hy, kpy1 = 1 and
Cns1 = Cp X {|Tn+1] € R}. On 0Cp41 one has either |z,1| = R, with the original
map F, or X in 8C, and |z,+1| < R. On 9C), one has to consider first what
happens if z; = 0, where the minimality argument is replaced by the induction
hypothesis, while for Arg z; = 0 one has exactly the same extension steps as before,
since &1 plays no role in that argument.

Thus, if dim V¥ < dim W —k, one may go all the way and obtain an extension
to C which respects the action of I'/H on 0C and this extension is reproduced by
I'/H to give a I'-equivariant map on B¥. While if dim V# = dim W# -k, one has
the same extension to C and, given any continuous extension to C, with maybe
zeros, one obtains a I'-equivariant map on B¥ which is non-zero on I'(8C). The
possibility of an extension (continuous and non-zero) to C will be determined by
the Brouwer degree of this map from 8C into W#\{0}. O

4. The Extension Degree

In this section we shall keep the notation of the preceding one and we shall prove
that when dim V¥ — dimI'/H = dim W¥, then the obstruction to extension, the
degree of F on C, is independent of the previous extensions under the hypothesis
below. This integer will be called the ezxtension degree of F' and denoted by deggz (F).
(Later on we shall specify the dependence on H.)

Let v € H be represented by the diagonal matrices v on V¥ and ¥ on W (see
the first section). Assume the following:

(H) “For all v in H, det~ and det? have the same sign.

Let Vg and Wg be the subspaces of V¥ and W generated by the real rep-
resentations of I'. It is clear that signdet~y depends only on the behavior of
on Vg and in fact on V§, the orthogonal complement of VT in Vg. (The complex
representations give a positive determinant.)
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Thus, (H) is satisfied if Vi = W}, for example if Vg = R® x Wg. In this case
7 reverses the sign of the same number of variables in Vi and Wy, for example an
odd map. But one may also have the case of an action which reverses a different
number of signs, provided the difference is even, for example an even map on an
even dimensional Vj.

Recall that k; = |H;_,/H;| and that there are k of them which are infinite. Let
B, be defined as the intersection of B¥ with the set of X’s which have all their z;'s,
with k; = oo, real and non-negative. By is an (7 + 25+ k)-dimensional ball, i.e. the
dimension of C and of W#. Note that any map F which has a I'-extension to BX ,
with K > H, has a continuous extension to 8B}, either from this property or from
the dimension hypothesis. Let F be this extension. One then has the following
result:

THEOREM 4.1. If (H) is satisfied, then the extension degree of F depends only
on the T'-homotopy class of F restricted to BBY and on the extension F to UBX,
K > H. Moreover, degg(F) is independent of the extension to 8C and of the
choice of C itself. Furthermore,

deg(F; Be) = ([] k1) deg(F),
where the product is taken over all j’s with k; finite.

PROOF. As it is easy to see, one may take € to be 0 in the definition of G. We
claim that By is generated by [] &; disjoint images of C and that, on each, F has
the same degree.

As a matter of fact, let X; be a point on OC such that all its components are
non-zero and its j-th component has Argz; = 2r/k;, with 1 < k; < oo (if z; is
real, this means z; is negative).

From the Fundamental Cell Lemma, there is a unique +; in H -1/ H ; such that
v x ; belongs to C and the argument of the j-th component of 2’3 lx ; is 0. This
implies that Y ! leaves invariant the arguments of the components of X; which
correspond to k; = oo or k; = 2 and z; real, i # j (if not, v 1Xj would not belong
to C), i.e. y; belongs to the isotropy subgroup of the corresponding z;’s.

Thus, 'y;.’(C'), p=0,...,k;—1, are k; disjoint cells, contained in By, with y; > 0
for i # j and k; = 2, with the same volume. Moreover, C and ~,;C have the face
Argz; = 2n/k; in common.

Note that, if Argz; belongs to [0,27/k;), i # j and 1 < k; < oo, then Argy;z;
belongs to an interval of length 27 /k; which intersects the previous one, since this is
the case for Y 1x j and X;. Furthermore, since y; belongs to H i—1, Z; is unchanged
ifi<j.

Suppose then that there is an X in By which belongs to 7f(C°) N+{(C®) for
somep, 1 <p<k;—1,and q, 1 <q<k;—1. If v, corresponds to k; = 2 and a real
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representation, then +; preserves y; and one has an empty intersection. Thus, the
only possibility is for complex 2; and z;, with Argz; in (p27/k;, (p + 1)27/k;) and
Argz; in (¢27/k;, (g + 1)27/k;). But, if ¢ < j, then +y; fixes 2; and hence, Argz;
must belong to (0,27/k;) and p = 0. But then C° N {C° = { unless ¢ = 0.

Thus, the [Jk; images of C° do not intersect and, since Bj, may also be de-
composed in the same number of cells, with the same volume, these images cover
properly By.

Now, recall that F' was extended to C in such a way that F(yX) = FF(X),
whenever X and ~ X belonged to 8C, and that F was also extended to I'(0C) with
the same property.

Thus, if one takes, on 77 (9C), 0 < p < kj, the map Fj,(X) defined as F} ,(X) =
¥, F(v;?X), then Fj;;(X) = F(X) is continuous and non-zero on the boundary of
that cell and coincides with F’ on the boundaries of the adjoining cells. Note that,
if X is in 0C with Argz; = 2n/k;, then _IX has its j-th component with zero
argument but may not belong to C. But there isa+vin H such that yy; ~1X isin
C. Now, F(X) was defined as Wjﬁ_lF(fy'yj_lX) and ﬁ(fy‘lY) =5"1F(Y) for vy in
H; and Y on the back face of C, i.e. with Arg¥; = 0. Hence,

deg(F; Bx) = ) _ deg(Fjp; 77 (C))-

Now, deg(Fjp;75(C)) = signdet (v; ) signdet (77) deg(F; C). From (H), one has
deg(Fj,»; 7} (C)) = deg(F; C) and thus, deg(F; By) = [ k; deg(F; C).

At this stage of the proof, we have shown that the extension degree depends
only on the extension of F to 0Bx.

Let z; be such that k; = oo, set V# = VH N {X with z; = 0} and let B¥ be
the corresponding ball with dimension equal to dim W# + k — 2. If the isotropy
group of BF is bigger than H, then F has an extension by hypothesis. However, if
it is H, assume that for a given F, one has two equivariant extensions F; and F; to
BH. On the boundary of [0,1] x Bf, define an equivariant map to be Fy for ¢ = 0,
F, fort =1 and F for [0, 1] x (6 BF UBX). From the first part of Theorem 3.1, one
obtains an equivariant extension to [0,1] x Bf, that is, a T-equivariant homotopy
from Fy to Fi.

It is clear that, by starting from [, BH and going up in dimension, one may
extend this homotopy to a I'-homotopy on |J B and, by restriction, a plain homo-
topy on OBy, and prove that degg(F) depends only on F on 8B and its extension
F on |JBX. Note that, in fact, degg(F) depends only on the homotopy class of
(F, F) on (8B¥) U BX | hence not on C, since in the above argument one may put
the I'-homotopy between two elements of [F, 17'] on [0,1] x (8BH U BX) and obtain
an extension of the I'-homotopy to |J Bf and, by gluing the I'-homotopy of F on
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OBH with.the restriction of the I'-homotopies on |JBF to 8B, a homotopy on
0B}, and the same extension degree. m|

REMARK 4.1. By and C give a global “Poincaré section” since one takes € <
z < R for all i’s with k; = oo. By writing I'/H = [],(Hi—1/H;) [[,(Hi_1/H,),
where the first product corresponds to k; = oo (here the action of each component
is not related to the order of the coordinates), one has I'/H = T* x H, where T*
is a maximal torus and H is a finite group of order [ k;. Note that, if one makes
a permutation of the coordinates, one obtains naturally a new map F’ and a new
group H'. For a simple example, take (21, 29) with S'-action (€% 21, €39 2); it
is easy to see that |H|  |H'|, but we shall prove later on, with the explicit form
of the generators given in Section 7, that degz(F) = ndegg(F’) where 7 is the
signature of the permutation.

Note also that we have only used the fact that signdet~y; = signdet; for the
|H|~;’s needed in the proof and not the full strength of: hypothesis (H). We have
seen that 7; changes only the sign of y; if k; = 2 and leaves invariant the other y;’s
with k; = 2, while y; leaves invariant all y;’s with k; = 2, if 2; is complex. However,
7; may act on those y;’s with k; = 1, hence one may not ask only that 7; reverse
an odd number of real components for y; real and k; = 2.

Finally, note that if det v; and det¥; have opposite signs, then deg(F(v;); Bx) =
sign (det ;) deg(F; By) = sign (det¥;) deg(F; By). Thus, deg(F; By) = 0.

Let II(H) denote the subset of HEV(SW) consisting of those elements F which
have a non-zero I'-equivariant extension to | Jx. ; BX. Here V and W stand for
V# and WH. Note that, if Fy and F, are I'-homotopic on 8BH and Fy has a
I'-extension, Fy, to {UB¥X, then F; also has a I'-extension, Fj, and (Fg,f‘o) is
I'-homotopic to (Fl,ﬁl) on 8BH U BX (use the I'-equivariant Borsuk extension
theorem given in [6, 1.7]).

Denote by II(H, K) the set of I'-homotopy classes of maps [F, ﬁ], F:0BH
WH\{0}, F : |JBX — J(WX\{0}), F a I'extension of F to all BX with K > H.
Let II be the assignment [F,F| — [F), from II(H,K) into II(H ). We have the
following:

THEOREM 4.2. II(H) is a subgroup of HEV(SW). Furthermore, I1(H, K) is an
abelian group, which is, if not trivial, isomorphic to Z via the extension degree. II
is a morphism onto TI(H), with ker Il = {[(1,0), F]}, for all possible extensions of
the map (1,0).

PROOF. As in [6, Appendix A], we shall write X as (t, X) where t is the invariant
variable on which the addition of HEV(SW) is defined. If H =T, then the result is
trivial. Thus, assume that H is a proper subgroup of I'.
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Let A= {(t,X)|t=0o0r1, or X is in B, K > H}. If (F,F) belongs to
II{H, K), then the I'-homotopy (F(t,7X), f‘(t, X)), T € [0,1], is admissible on A,
since, if (¢, X) belongs to A, then (¢,7X) also belongs to A and these maps are
non-zero on A (t = 0 or ¢ = 1 belongs to 8BH). Furthermore, (¢,0) € BT, hence
F(t,0) # 0 and (F(¢, 0),ﬁ(t, 0)) is deformable to (F(0,0), F(0,0)), since H is a
proper subgroup of I'. This last map is in turn deformable to ((1,0), (1,0)); it wT
is one dimensional, the admissibility of F' requires that F(0,0) > 0.

Thus (F,F) is [-homotopic to ((1,0),(1,0)) on A. The Borsuk equivariant
extension theorem implies that (F, f) is I-homotopic, on 8B¥ U BX | to a map
(Fo, (1,0)) (see [6, Prop. A.1}). Hence, one may assume that (F, F) is of the form
(Fo, (1,0)) ori A. Asin [6, p. 486], this implies that one may define a group structure
on II(H, K). Following the proof of [6, Proposition A.4], the fact that II(H, K) is
abelian requires that dim VT > 2. If dim V! = 1, i.e. VT is reduced to ¢, the
commutativity will come from the rest of the proof.

Note that, by reducing A to the set (£ = 0 or ¢ = 1), one sees that II(H) is a
subgroup of HEV(SW), abelian if dim VT > 2. Furthermore, it is clear that II is a
morphism, onto and ker IT = {[(1,0), F]}.

Note also that, by taking A = {(t,X) |t =0ort =1, or X € BX, or
X € Bf = BE N {z = 0}, with k; = oo}, we have seen that (F,F) has an
extension F; to B¥. On A, consider also the homotopy F;(t, 7X ). Then, as before,
one finds that (F, F', F;) is [-homotopic, on 8B | JBX | BE | to a map Fy which
has value (1,0) on |J BX |J BF with the same extension degree, deg(F, F).

Finally, the assignment [F, F] — degz(F, F’) is one-to-one (from Theorem 3.1)
and clearly a morphism into Z. Thus, II(H, K) is abelian and isomorphic to a
subgroup of Z that is either 0 or the subgroup generated by the single element
degE(Fo,fo). Thus, degg will be onto Z if there is a (Fo,ﬁo) with extension
degree 1. This will be proved later in particular cases. O

It may happen that II is not one-to-one: this is the case if ' = §1, dim VT =
dim WT — 1 (see [7, Lemma 2.3]).

However, our interest in this paper is to give a complete description of Hgv (8™),
thus, we shall try to avoid the case when ker IT is not trivial. This will happen under
one of the following two hypotheses.

(H1) For all K’s, K > H, dim V¥ < dimW¥ 4+ dimT'/K — 2.

It is not difficult to check that, for ' = S', the hypothesis of [7, Theorem 3.1]
implies (H1) if dim VT = dim W' 4 1 — 2p, with p > 1 (p = 1 is the case where
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degy depends on F'). For K =T, (H1) implies that dim VT < dim WT — 2.
For each minimal K, K > H, there is a non-zero I'-equivariant map
(H2) ¢ FL:9(BX)L — (WX)1\{0}, where (BX)L and (WX)L are the
orthogonal complements of BX and WX in B¥ and WH, respectively.

Minimal means that on adding a variable to B¥, the isotropy subgroup of the
new space is H.

As we shall see later on, from Borsuk-Ulam type theorems, (H2) implies that
dim(V¥)1 < dim(W¥)L. For the moment it suffices to note that (H2) is satisfied
if V = RF x W, with FL being the identity, or if I' = S, VT = R x WT and the
conditions of [7, Theorem 3.2] hold.

THEOREM 4.3. () If (H1) holds, then TT5(SV) is 0 or Z.
(b) If (H2) holds, then II(H,K) = TI(H), and degg(F) depends only on [F] in
II(H).

PrOOF. If (H1) holds then, by Theorem 3.1, F has an extension to BX for any
K > H. Replacing BX by I x BX, F by a first extension for 7 = 0, by a second
extension for 7 = 1 and by F itself on I x OB, we see that any two extensions
are [-homotopic on BX relative to dBX. By starting from I' and working on
intersections BX1 N B%2, it is easy to see that one obtains extensions on | ) BX,
K > H, which are I'-homotopic relative to 8B*. Thus, deg g(F, ﬁ) is independent
of F and, if F = (1,0), then ker IT = {0}. Hence II(H, K) = II(H) = HEV(SW).

If (H2) holds, assume that (1,0) is extended by F(Xg) : BX — WK\{0}.
Write X in V¥ as (Xk, X, ) and define

F(X) = (A~ 1X LI F(Xk) + 1XLI(1,0), (1 = [ X[t = YUXLIFH(XL/1XL]))-

Recall that || X|| = sup |z;| and that BH =1x XX <1}

It is easy to see that Fis I‘-eqmvanant F and F coincide on BX and F =
(1,0) on 8B¥. Furthermore F(X) # 0, thus [(1,0),F] =0 in II(H, K), or else
[(1,0), F] - [(1,0), F] = [(1,0), F]. If
F(2t, X), 0<t<1/2,

Git,X)={ .
(&%) {F(2—2t,X), 1/2<t<1,

(recall that all maps have value (1,0) for ¢ = 0 or ¢ = 1), then [(1,0),G(t, X)] =
[(1,0), F], G has value (1,0) on B¥ and G is T-homotopic on BX (relative to
its boundary) to (1,0). From the equivariant Borsuk extension theorem applied to
8BH U BX, ((1,0), F) is [-homotopic to a map ((1,0), Fy) with value (1,0) on BX.
Now suppose that F(Xg) = (1,0) for all X = (Xk,X1) in BX', for some
K' > H (thus, Xx has at least one component zero, from the minimality of K ).
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On A = BEKUBX UBBH define a I'-homotopy ﬁ(r, X) by multiplying F* by
in the definition of F. Then F(1, X) = F, F(r, X) = (1,0) on 8BH, F(0, X) is (1, 0)
on BX' and F on BX. Thus, one may extend the -homotopy on 8BH U BK”
K" > H, and assume that F is (1,0) on BX U BX'. By induction, cone finds
that F is I-homotopic, relative to dBH, to (1,0) on | BX. Hence degy(F, F) =
degz((1,0), (1,0)) = 0, since the later extensions to |JBF may be taken to be
(1,0). We have proved that ker IT = {0} and degj is independent of F. . O

'REMARK 4.2. In the proofs of Theorems 4.2 and 4.3 (b), it is easy to isolate the
points where the hypothesis dim V¥ — dimI'/H = dim W¥ was used, which was
only when the extension degree was computed. In general one has the following
result:

THEOREM 4.4. II(H) is o subgroup of HEV(SW), II(H,K) is a group (abelian
if dim VT > 1). II is a morphism onto II(H), with kerIl = _{[(1,0),ﬁ]}, for all
possible extensions of the map (1,0). Furthermore, if (H2) holds then kerIl =
{0}, in particular given [F] in II(H), then [F Fl] and [F, Fz] are I'-homotopic on
8BY | JBX, for any two T-extensions Fy and F -of F to | BX and T-homotopic
to a map [Fy, (1,0)].

-5. Homotopy Groups of I'-Maps

In this section; we shall begin our computations of the I'-equivariant homotopy
groups of spheres, from our previous results on the extension degree. Consider the
set of H's, isotropy subgroups, with dimI'/H = k fixed, and look at maps

F: UBBH — UWH\{O}

which have I'-extensions, F', to UBX — YWHX\{0}, for all K’s with dim T/K <
k — 1. Define

(k) = {[FIr} and I(k,k—1)={[F, F|r}

of maps F (and extensions F) as above.

If F € II(k) and F is [-homotopic to G on | J8B¥, then @ also has an extension
G, with (F, F) T-homotopic to (G, G) on | JOBH | J BX. Thus, TI(k) and II(k, k —1)
depend on homotopy classes.

As before, one may deform F so that it is (1,0) on {t = 0, t = 1, |y BX}.
One may define group structures on II(k) and II(k,k — 1) which are abelian if
dim VT > 1.
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Let IT : II(k, k — 1) — II(k) be the restriction. IT is a morphism onto TI(k). As
in Theorem 4.2, one has

LeEMMA 5.1. II(k,k — 1) and II(k) are groups (abelian if dim VT > 1), II
is onto and kerII = {[(1,0), F]}, where F is any T-extension of (1,0) to | BX,
dim[/K <k — 1.

Assume now the following hypothesis:

¢ (a) For every H, with dimT'/H = k, and minimal K > H, there is
a non-zero equivariant map Fy : 8(B¥)L — (WX)L\{0}, where
(B¥)L and (WX)~L are the orthogonal complements of BX and
WX in BH and W¥, respectively.

(b) For every H, with dimI'/H = k, there is a non-zero equivariant

| map Ff : 0(BH)L - (WH)R\{o}.

(H2) {

Notice that part (a) is just (H2), while part (b) will give an extension to dB.

LEMMA 5.2. If (H2)' holds, then I(k,k — 1) = II(k). Thus, [F, F1] and [F, F]
are T'-homotopic on | JOBY | BX for any two extensions Fy and Fy to (UBX and
also T'-homotopic to [Fy, (1,0)].

ProoF. Let H, with dimI'/H = k, be such that any K, K > H, satisfies
dimI'/K < k — 1. Then for minimal K, the proof of Theorem 4.3 implies that
one has a I'-homotopy of ((1,0), F), an element of kerIl, to ((1,0), Fy), where
Fg=(1,0) on BE. If X = X @ X1 ® X5, with X; in (VE)Le = (vK)L A yH
and X, in (VH)L, then the map F of Theorem 4.3 has to be replaced by

FX) = (1~ IXLIDF(Xk) + X012, 0),
(1= IXINEA = )| X | Fre (X / I X)),

(1= IX N = O Xa|| Fa (Xa/1 Xz])),
where X| = X; @ X». This is where part (b) of (H2)’ enters, the map F is then
restricted to | JOB¥. The induction argument on H, so that one has compatible
extensions on intersections of B’s, is then similar to the proof of Theorem 4.3. O

THEOREM 5.1. Assume (H2). Then
(k) = [ [ 1(H)
H

Jor oll H’s with dimT'/H = k. If furthermore (H) holds and dim V¥ < dim WH +
dimI'/H, for all H’s with dimT'/H = k, then II(k) ® Z x Z x --- X Z, where
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one has one Z for each H; such that dimT/H; = k, dimV#: = dim W¥: + k and
II(H;) # 0.

PROOF. Let [F] be an element of II(k) and H; be a minimal isotropy subgroup,
that is, dimT'/H; = k, but dimI'/K < k —1 for any K > H;. Then FH: : §BH: —
WHi\{0} is an element of II(H;). In the particular case, i.e. the second part of the
statement of the theorem, degg(F¥:) = d;a; and, from Theorem 4.3, there is an
element F; in II(H;), with minimal extension degree a;, such that [FH] = d;[F}]
in II(H;). As we have seen in Lemma 5.2 one may assume that F' and F; are (1,0)
on|JBX,K > H;,andont=0o0rt=1.

For anv element G of II(H;), consider the suspension operation defined by
G(X) = (G(X:),t(1 — )| X | FE (X /]| X)), as an extension of G to V, where
X is written as X; ® X;*. Then [F] — [F#:] = [F}] has an extension from B¢ into
wHi\{0}.

One may do the same procedure for each such minimal H; since we know that
on VHi N VHi one has an isotropy subgroup K with dimI'/K < k, and there F
is assumed to be (1,0). Let [Fy] = [F] — Y [FH:] where the sum is taken over
all minimal H;’s. Note that, at this stage, d; are uniquely determined by F¥:.
Note also that, from the analogue of Lemma 5.2, one may assume that F; = (1,0)
on |J B+ and that the homotopy type on |J8B¥ |JB¥ |J B¥: is unchanged. Take
then H, with dimI'/H = k, dimT'/K < k or K = H; for some of the preceding H;’s.
The map F}! defines an element of II(H), which is dg [Fy] in the particular case
where Fz has minimal extension degree and fH is constructed from Fg as above.
Clearly, [Fy] — [FH] is extendable to B¥. One may perform the same construction
for all H'’s with the same characteristics, to conclude that [F1]— 3 [FH] is extendable
to |JB¥. Note again that given the d;’s, the dg’s are unique and, in the general
case, that the [ﬁlH |’s are completely and uniquely determined by [F].

One may go on to the next stage of isotropy subgroups and prove that [F] —
E[ﬁ]H ] = 0in II(k), with [ﬁ]H | = dg[Fy) in the particular case when Fy has a min-
imal extension degree, that is, one has an extension to | J BH H with dimT JH =k.
The sets of [F‘JH ]’s and of dy’s are uniquely determined by F' (for the first generation
F)) and Fy.

Let now II be the morphism [];, II(H) — II(k) defined as

(Ff, P, B = S IER),

and in the particular case Y dy[Fp] where Fy is given above and dy € TI(H) 2 Z
(or 0).

From the previous argument, II is onto and one-to-one, since from the equal-
ity [F] = S[F7] one has an inverse to II, since {FF} and {dg} are uniquely
determined by [F]. Thus, II is an isomorphism and the proof is complete. O
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Let Iy = {[F]p | F : 0B — [JWX\{0}, for all K with dimT/K < k—1}.
It is clear that IIx_; is a group (abelian if dim VT > 1).

THEOREM 5.2. Assume (H2) holds for all H’s with dimT'/H = k. Then
(a) Ix = ;1 x II(k), where Tx_1 is the suspension of Il—1 in .
(b) If, moreover, dimVZ < dimW?* + dimT'/L — 1, for all L’s with dimT'/L > k,
then I, = IIL, (SW).

Note that these hypotheses are satisfied if V = R¥ x W. In this case the free
part II(k) of Il is also computed in [5].

ProOF. Let P, : Il — Ilx_; be the restriction map. We shall show that
P, is onto: in fact, let [F] be an element of Ilx_;. Take a minimal K with
dimI'/K =k —1 (i.e. if H < K, then dimI'/H = k). Obviously, FX maps B¥X
into W¥\{0}. Choose any equivariant extension to BX (it may have zeros) and call
it again FX. Write X = Xx @ X and define the suspension Fx(X) = (FK(Xk),
| X%l F( X%/ X5])), where Fi is given by (H2)". Clearly, Fx|0BX = FX hence
[F] — P.[Fk] is deformable to (1,0) on 8B¥X. Thus, from the equivariant Borsuk
extension theorem, the above difference is I'-homotopic in II;_; to a map F which
has value (1,0) on 8B% and which may be extended as (1,0) to BX.

Let K’ be another minimal isotropy subgroup, with dimT'/K’ = k—1. As above
let Fier(X) = (FX'(X), || X& || F& (X, /|1 X |). Then Fyxr = FK' on BX' and
Fgr(X) = ((1,0), | X ||F#) for X in BX, since then F(X) = FK'(X) = (1,0).
Thus, Fx:(X) is deformable to (1, 0) on BX [F| — P,[Fk/] is deformable to (1,0)
on BX | JOBX " and this difference may be replaced by a map with this value on
these two spheres.

By performing this operation on all minimal K’s we shall arrive at [F] —
3 P. [f 'k ], which is deformable to (1,0) on |/ ABX, for all K’s, hence zero in Ig_,.

That is,
171 =2 ClFl),

or else, from the equivariant Borsuk extension theorem, F' has an extension F with
[F] = S_[Fk]. Note that in this sum the choice of the Fx’s may vary, according to
the choices of the order in the sequence of the minimal K’s and of the complementing
maps Fj. However, for a given choice it is easy to see, from the equivalent of Lemma
5.2, that if F and G are -homotopic then this is also true for 3 Fx and 3" Gk,
that {FK} are uniquely determined by this choice and that the assignment from
[F] to [F] = Y_[Fk] is & morphism. The morphism from [F] to [F] will generate
the suspension I~Ik_1 of IIx_; in .

Furthermore, it is clear that if P,[F] = 0, for [F] in IIi, then F is extendable to
|UBX, for K with dimT'/K < k — 1, that is, [F] belongs to II(k). Moreover, if F
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belongs to II(k), one may assume, from Theorem 5.1, that F restricted to | J BX,
dimT/K <k —1, is (1,0) and the explicit construction of the corresponding Fix’s
implies that [Fx] = 0 for each K. Hence II(k) = ker P.. Thus, [F] = ¥ dg[Fy),
with dimT'/H =k, Fy are the generators of II(H), as in Theorem 5.1, and dj are
the extension degrees in the case that dim VE < dimW¥ + dim L/H.

In general, if [F] is an element of II;, then P,[F] = 3 P,[Fx], and as above,
[F] — Z[ﬁx] is an element of II(k), which is equal to ZdH[ﬁH]. Thus, [F] =
S [Fk] + 3 dy[Fg]. Thus, given F and F, the dg’s are unique. Hence, one gets
the required isomorphism.

Under the hypothesis (b), let [F] be an element of IS, (SW) and let P,[F] be
the class of F' in II;. Then [F] — YIFk] — Y dy [Fg] is 0 in IIi, that is, it belongs
to II(k + 1). From the dimension hypothesis, one has an extension to BL, for any
L with dimT'/L =k +1, but dimI'/H < k, for L < H. This extension can then be
pursued, step by step, to all of B, giving the trivial element in IIL, (SW). O

COROLLARY 5.1. (a) If (H) and (H2)’ hold for k =0 and dim V¥ < dim WH
for any isotropy subgroup H of ', for example if V =W, then

L (SY)ZXZ x ... x Z2 15, (57,

with one Z for each H with dim V¥ = dim W¥, dimT'/H = 0 and TI(H) # 0. Here
=0/, V' =VT" , W =WwT".

(b) If (H) and (H2)" hold for k =1 and dim V¥ < dim W +1 for any isotropy
subgroup H of T, for ezample if V=R x W, then

5y (%) =I5, (SW) x Z x ... x Z,

with one Z for each H with dim V¥ = dimW¥H + 1, dimT/H =1 and II(H) # 0
and V' =VT", W =WT", " =T/T". -

PROOF. (a) is an immediate consequence of Theorem 5.2, while, for (b), one
needs to recall that | BX, dimT'/K = 0, is in this case BT/T" and that K contains
T™, thus Il is the first group. a

Note that in (a), we recover well known results, mentioned in [6], and which
will be given more explicitly in the next section.

REMARK 5.1. Let P, be the map, from IIL, (SY) into IT;, induced by the
restriction to | JOB¥, dimT'/H < k. Assume that for each minimal H, one has a
T-map Fg : 8(BH)L — (WH)1\{0}. As in the proof of Theorem 5.2, for any [F]
in II;, there are maps Fyy : 3B — W\{0}, constructed iteratively from (F¥,F)
and from differences of such maps such that [F] = 3 Py[Fy], that is, Py is onto.

Furthermore, for any [F] in IS, (S¥), we deduce that [F] — 3 [Fi] belongs to
ker P;. Finally, if (H2)' holds for k, then, from Theorem 5.2, 3 [Fy] = Y[Fk] +
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Zd,-[l::'i], where Fx depends on F and corresponds to K’s with dimI'/K < k—1
and [F}] are the generators for II(k).

Putting together Theorems 5.1, 5.2 and Remark 5.1, one has then the following
result:

THEOREM 5.3. If (H2) holds for all k’s then

5y ($W) = [ Ti(H)
H

for all isotropy subgroups H of T', where ﬁ(H ) stands for the suspension of II(H)
by Fi.

Note that the construction of this isomorphism is involved and requires a step-
by-step extension process on the spaces V¥ for decreasing H’s. However, one may
use this construction in order to give a computational formula for the class of F.
We shall give below such a formula which is similar to the one given, for the S*
case, in [7, p. 78] and close to the idea of normal maps given in [5] for a general Lie
group.

Decompose V as VE @ V4i#, W as WH @ W# and write X = XH g X1#,
F = (FH,Ft#). Assume (H2)’ holds for all k’s and let F& be the “suspension
map” from V4# into WL#\{0}.

‘Suppose that (Fg)1x = (Fg)L# for all K, H, that is, the suspensions are
compatible. This will be the case if hypothesis (H3), given in Section 7, holds, in
particular if Fi is the identity.

Let g : V-# — R be defined as a non-increasing function of | X1#||, with
value 1if | X#|| < € and value 0 if || X1 #|| > 2¢. Since F1# =0 on VH and FE £
0 on 8BH, it is easy to see that F is [-homotopic, on 8B, to (FH, (1 — ¢y)Fix
+yu Fi) (replacing 1z by ¢y and taking € small enough).

Arrange the isotropy subgroups in the usual decreasing sequence, Hy =T', Hy, ...

and let

. 1
F}+l = (E}?-'-la (1 - ¢j+1)Fj7' T+ ¢j+1Féj+l)'

Here the subscript H has been omitted for clarity, Fjj+1 stands for FjH"*l, P41
for ¥, ,,, and so on. It is clear that F;,; is I'-homotopic to F; and, by induction,
to F.

Assume, by induction, that, if ¢ < j, then Fjl" = Fg whenever | X} < e
Then for such small X;',

i j i Lj i i
Figy = (FID5, (U= ) (F 75 + i (g, ) )
= ((Fa, 1, (1 = 541) (Fiap, ) o0 + i (Fig ) H+) = Fig
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where one has used the hypothesis on the suspensions, the induction hypothesis
and the facts that (FH)Lx = (FPLx)H and (FL#)Ltx = (FLx)Le coming from the
projections.

Thus, F is T-homotopic to a map F, a normal map in the terminology of [5],
such that FL# = F if | X1#|| < e. One then has the following result:

THEOREM 5.4. Under the above hypothesis, [F) is, up to one suspension, the
sum of L degr(FH; BE\ Uy BX), where BE is the closed e-neighborhood of
BX in VH and Sy is the class suspended by Fi in II(H).

PROOF. It is enough to note that degp (F; B) = o [F’] and that degp is additive
up to one suspension [6, pp. 444 and 445]. Furthermore, the sets (B¥\ |J BX) x
{X1# | | XL#|| < ¢} are disjoint and cover B. F is non-zero on the boundary of
these sets and Fi acts as a suspension. Finally, (2t +2¢(X)—1, FH) is non-zero on
BX, K > H, where ¢ enters in the definition of the I'-degree on the set B¥\ | BH,
hence the above pair defines an element of the suspension of II(H). O

Note that the same result holds for the I'-degree of f with respect to an open
invariant set (2, instead of B, as in [7, Prop. 4.3].

6. Relationship between Homotopy Groups

Let Hp be a subgroup of I'. Let V, and Wy denote VHo and WHo respectively
and assume that there is a I'-map

Fg : V5-\{0} — W5 \{0}.

Let P, be the map, from 15, (S¥) into Hgvc (S™e), induced by the restriction to
Vi, F giving FHo. From the existence of Fd‘ it is easy to see that P, is onto.
Assume that (H2)" holds for some k, both for V and V. If H > Hy one may
complement F# by a non-zero map on the orthogonal complement of V¥ in Vj
and then by Fj .
In the commutative diagram

5, (S) 2 TGy, (S%)

Pl L7

o, B (W)

each map is onto, from Remark 5.1. Now, if [F] is in II%, (S%), then, from Theorem
5.2, it follows that Px[F] = ¥ Pe[Fx]+ Y. du Px[Fi|, where Fx and Fy are of the
form (FK, Fi). Thus, if Hy is not a subgroup of H or K then, from the construction
of Fi, we deduce that f{g" is homotopic to (1,0). That is, in this case, Py[Fx] = 0.
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Hence, P;[FHo| =3 P [ﬁ}?"] +> oduPr [ﬁ_;’}"], where the sum is taken over the
K’s and H’s which contain Hj.
Similarly, if FHe = (FHe, F3-), then

o = ~

[FHe) =3 [Fx] = ) dulFal
belongs to ker PPy = ker PoPy, ie. this map extends to |JB¥, for H > H,,
dimI'/H < k. Moreover, if Hy is not a subgroup of H, with dimI'/H < k, then
the extension to | J BX, K > Hy, dimT'/H < k, complemented by F§-, is not zero
on B¥ (a zero should be in V¥ NV, from the definition of Fg). Thus, the above
difference belongs to ker P;.

Let us order all the isotropy subgroups Hj,... , H, with dim V¥ = dim WH: +k
and dimI'/H; = k so that if H; > Hj then i < j. For a given [F] in IIL, (%), we
have

PiF] =) RulFk,]+ Y diPlF,
Py[FH] = > BulFx ) + ) diPilF),
where ﬁxj ,J=1,...,m, depends on F' and gives an element in II;_;, while F; are
the generators for II(k) and }°,; denotes the sum over K’s and H’s which contain

H;.
The above relations may be written in matrix form:

Py[F] = € Py[Fi] + nd,
where

Py[F] = (P[F™], P[FH2),... P[FH))T,
Fx = (Fgyy... Fx,)T, d=(dy,...,dn)7,
€; =1 if K; < K, 0 otherwise, i=1,...,n; j=1,...,m,
7 is a lower triangular matrix, 7;; = €;; [f}] with
€; =1 if H; < Hj;, O otherwise,i=1,...,n; j=1,...,m.

As an application, let us take k = 0,V’' = VI" W’ = WT" and dimV’ =
dim W’. Hence, dim(V#:)+ = dim(WH)L. Let I = I'/T", H] = H;/T", k! =
[TY/H]|, where H] are the isotropy subgroups for V’. Let F; : V'H:i s W'H: be
the generator of II(H}), with minimal extension degree o;. Let §; be the Brouwer

degree of F;*. Then, by using the product formula for the Brouwer degree, and
using Theorems 4.1 and 5.2 we get

deg(F;) = B; deg(F™) = Y e;5d;8;0,k}.

Since €;; = 1, d; can be computed from the set {deg(F¥:)}.



EQUIVARIANT DEGREE FOR ABELIAN ACTIONS 389

Note that d; is an arbitrary integer, by taking d;[F}] and using the fact that all
the maps are morphisms.

If one complements F; to the orthogonal complement of VHi in VH: first and
then by F7-, if H; < Hj, then B; = B;0;j, where B;; is the Brouwer degree of
the first map. Thus, 3, = 1 and €,; = 1, for the isotropy group H,, of V’'. The
following result holds:

THEOREM 6.1.
deg(FH) = Zfijﬂijajdj|F/Hj|;
J<i
in particular,

deg(F) =) _ Bjo;d;|T/Hj-

For instance, if IV acts semi-freely on V', i.e. Hy =T,Hy = {e} and IV & Z,,
on (V) (see Lemma 1.1), with dim V'T' = dim W'T', dim V’ = dim W’, then

deg(Frl) = dla
deg(F) = B1d; + agnds.

We have a; = 1, since there is a map from V'T' to W'T of degree 1 and we shall
prove that ag = 1.

Note that, if F+ : 8(V'T)t — (WT)1\{0} is any ["-map, then deg(F(Xy), F*) =
deg(F'), by complementing with any map F(Xo) of degree 1. In this case, d; = 1
and deg(F1) = B +asnds. (The passage through VT, for a free action on (V'T)L,
is due to the fact that an invariant part is needed in our computation of these
groups.)

Let Z, act freely on V = {(21,... ,2m)} and act on W = {(&1,... ,&n)}, with
wT = {0}.

Thus, if v generates Z,, then yz; = e>™™i/"z; with 1 < m; < n, m; and n
relatively prime, and J¢; = e?""4/7¢;, with 1 < nj < n, n = r;fi;, n; = rk;, 7
and k; relatively prime. Thus, r; is the order of the isotropy subgroup of ;.

Now, there is a unique p;, 1 < p; < n, such that p;m; = 1[n], thus v?7z; =
e?*"*/"2z; and p; and n are relatively prime. Similarly, there is a unique g;,1 < ¢; <
7ij, with g;k; = 1[r;], i.e. gyn; = r;j[n]. Let [pjn;] be the residue class of p;n,;
modulo n. It is clear that [p;n;] # 0 and [p;n;] = 1 if n; = m;.

THEOREM 6.2. Any T-equivariant map F : SV — W\{0} has a degree,
deg(F) = B+ nd(F), where 0. < 8 < n is fivred and d(F) may be any integer,
B =Tllpin;l[n] and B[] gsm; =[Iriln], thus B #0 if [Ir: #0[n].
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PROOF. We shall add the variable ¢ and, for notational purposes, take SV =
{(21,-.. ,2m) with |z;] = 2 for some j}. Let

ﬁo(t, APEER 7Z1TL) (2t [plnll ,z,[.gmznm])'

Since (y2;)P™ = 72{"™, the map F is T-equivariant. Then do(Fp) = 1, deg(Fp) =
[Ilpjn;] = B1, by choosing this complementing map. Let

Btz om) = @+ 1-2]] 5], 2™ (e - 1),

22 (2 2y ~ 1), 2B (2P 2, — 1),

Since the terms E’f 15 z;j are invariant, ﬁl is I'-equivariant and it has n zeros in
Ix B, I=10,1], with lzJI =1,t =1, each of index 1 (use standard deformations).
Thus, do(Fl) =0, d; (F1) =n. Hence as =1, d2(F1) = 1. Then, given any map F,
for F = (2t — 1, F) one has d; (F) = 1, deg(F) = deg(F) = fy + ndy(F). Taking

= [61] one has deg(F) = 8+ nd(F). Note that 8 # 0 if the action on W is also
free, for example if n; = m; in which case 8 = 1, recovering the usual result.

It remains to prove that any d can be achieved. Consider the map

F(z1,... y2m) = (20" (27 — 1), 2522 (Z)* ™2 25 — 1),
zpa‘na(—Pz'ms 23 — 1) zpmmm ((zpm 1'mm— )N _ 1))

The zeros of F in B are (0,...,0) with index equal to [Ipjn; = B+ In,
(e?m*/™ 0,... ,0) of index equal to H i>a Pinj (there are n of them), (e?"ik/m
kaplmz/n 0 .,0) of index equal to HJ>3 pjn; (also n of them),... ,nN zeros
with |z;| =1 for all j’s, with index —1. Thus,

deg(F) = ,3+n(l+z [ ®ins) - N).

k>2 4>k

One may choose N such that deg(F) = 3 + nd, for any integer d. O

Note that one may have # = 0. For example if n = 6 and m; = my =
1, ni =2 =r, ng = 3 = rz. The map (2%,23) has degree 6, and the map
(22(2% — 1), 23(#4%4 — 1)) has degree 0.

As an application, we shall verify the assertion made in Section 4, on the con-
sequence of hypothesis (H2); let K > H be minimal, i.e. K N H; = H for any
H; =Ty, with z; in (VX)L Then, if (V¥)' is spanned by {X = (z1,... ,2)}, we
have 'x NK = H for X # 0, and K/H acts freely on that space. If (WK)L = {¢ =
(€1,---,&m)}, then K/H acts on that space with no fixed points. If I > m, take
any m-dimensional subspace V;, of (VX)L. Then, if F* is a non-zero I'-map from
d(B¥)* into (WX)\{0}, then deg(F*|V;,) is 0 by deforming the map through
the remaining variables.
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However, if K/H = §', with free action of z;, given by €%, and action on &5
given by €ii¥ n; # 0, then from [6, Theorem 4.4], deg(F*|V,,) = []n;. While, if
K/H = Z,, with the actions given in Theorem 6.2, then deg(F*|V,,} = [] pjn;+dn,
which is non-zero if []p;n; # 0[n).

Note that, if K/H = S!, then one may take Z,, as a subgroup of S!, for any n
which is relatively prime to all n;’s, for example a large prime. In this case, p; =1,
deg(F|V;,) = [In; + dn, for any such n, hence d = 0 and deg(F1|V;,,) = [[n;.
We have proved the following result:

COROLLARY 6.1. IfT acts freely on V and W' = {0} and if there is a T-map
OB — W\{0}, then dimV < dimW, provided [[ pjn; # O[|T|], when T is a finite
group.

REMARK 6.1. There is a vast literature on the “mod-p” or Borsuk-Ulam type
results (see [10], [15]). In most of these results the symmetry is used in order to
compute the ordinary degree of self-maps with the same action on both sides, or
with a free or quasi-fixed point free action as in [1], [3], [17] and [13].

The advantage of classifying all equivariant maps is that one has a complete set
of possible relations. This is the case of [14], [4] and [9] for self-maps with the same
action. Here we give, under hypotheses similar to those of [16], a precise formula
for these degrees. It is clear that one may extend most of these results and play
with different situations, as for example in the case of I' = Z,,, define a map from
V with a canonical action €2™*/™ into V, given by z;"" , and get the same sort of
results as in [6] or [1] for the Fuller like maps. However, in order to keep the length
of this paper to a reasonable size, we leave these applications to the reader.

7. Generators
From this point until the end of the paper, we shall assume the following hy-
pothesis:
(H3) V =R* x U with dim UH = dim W¥ for all isotropy subgroups H of U.

Thus, V# = R* x UH and (H3) will be satisfied if U = W,
Denote by {A1,... , Ak, %1, .. ,Tn) the elements of V, and by (&1,...,4,) the
elements of W.

LEMMA 7.1. If (H3) is satisfied, then so are (H) and (H2), for all H, and there
are integers 1,1 < l; < my, such that the map

(£1,... %) — (24, ... ,2in)is T-equivariant.
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ProOF. (H3) implies that dim(U¥)1¥ = dim(W¥)# for all K > H. If
T'/H; & Zy and 7 in Zs acts as —I on (VT) %3, then on (WT)1#;, 5 must also act
as —I, since if not one would violate the above equality of dimensions. Hence (H)
is satisfied.

We shall identify UT and WT and take I; = 1 for these components.

Let H be maximal in {H; = I'y;}. Then I'/H = Z,, or S* and acts freely on
(UT)'#5 and without fixed points on (WT)*#;. As in the proof of Theorem 6.2,
either I; = [pjn;] mod n, or I; = n; in the case of a S'-action will give the answer.
Note that n; in this last case may be negative. In that case we shall redefine W
by taking conjugates on the corresponding &; and maintain n; strictly positive.
This will be an implicit assumption in the paper, which is taken for notational
convenience.

If H is submaximal, i.e. H = H; < H;, then let (z1,... ,z,) be such that T, =
H;, with the corresponding equivariant map (a:lll, ..., k) onto WH:, The space
(UH:)'#; is spanned by (Zr41, .. - »Zrts), While, from (H3), the space (WH:)-#;
is spanned by (&r41,...,&r+s). The group I'/H; acts freely on the first space and
without fixed points on the second, since H;/H; acts without fixed points and
T'/H; > H;/H; with WT 0 (WH:) 5 = 0. The same construction as before will
give an equivariant map, upon taking conjugates when necessary.

Now,if H = H; < H;,N---NH;, = = H, where one has constructed an equivariant
map from U# onto W, then on (UH)L# | the group T'/H acts freely while T'/H
acts without fixed points on (WH )1# and one may repeat the above construction.
It is also clear that this map gives Fig from (Vx)1# into (Wk)1# satisfying (H2).

Note that if m; = 2, then {; =1 and the map on the real representations is just
the identity. O

In order to construct the generators we shall exhibit some invariant polynomials.
Let {z1,...,z,} be coordinates in U, with H; = I'z;. Let Hy be a subgroup of I'
and define Hj =HoNnHN--- ﬂHj. Let kj = IHj—l/Hjl-

LEMMA 7.2. Ifk; < oo, forj=1,...,s, then there are integers ay, ... ,a; = k,

such that z7.. . zke is H;_,-invariant. (If a is negative, then z® means w'al )

PROOF. Since Ho/ H, = (Ho/H1)(H1/Hy) - - - (H,—1/H,) has finite order (IT k),
it is a finite group. Furthermore, Ho/H, = (Ho/H; N Ho)((H; N Hy)/H,), hence
Hy/H; N Hy is a finite group which acts freely on z; and there is a v, in Hy with
v;z; = e*™/Mig; with n; = |Ho/H; N Hy|.

The proof of the lemma will be by induction on j. If j = s, then I~Is 1/ I~I acts
freely on Zs and any 1y in H,_; can be written as v = 826, with B,z, = e2™i/ks g,
and & in H,. Hence, (yz,)* = fo*szks = g« is H,-invariant.
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Assume that P(zj41,... ,2s) = 545+ 25 is Hj-invariant, for some j > 1.

Any 7 of ij_l is written as v = 0594, with §3; generating ij_l/I?j and act-
ing as €2"/%s on z;, 0 < @ < kj, and § in H;. Then P(yzjy1,...,7yz,) =
B4 (bjq1)940 - - B7% (6z5)*. Now, as before, f; = Bi*mk, where Gy gen-
erates I:Tj_l/Hk N ij_l, Brzy = e2™/™ gy ny is the order of this group, 0 <
€r < nyg, and 7 is in Hi N I?j_l. Thus, B;7** (6zx)** = g2miocker/mh (S, Yok,
Hence, P(YZ;41,- .- ,YZs) = €™ P(6Tj41,... ,0Ts) = €™ P(z;11,... ,Ts), With
€= a(2;=j+1 Qker/nk)-

Now, if v = ,BJ’.C", i.e. @ = k;, then this -y belongs to ﬁj_l NH; = flj and the
corresponding € = k;(3_;_; 1 @kex/nx) must be an integer, which we will call —q;.

If P(zj,... ,2s) = 3 2575+ 3, then
P(’)’.’I)]', e ,fyms) = (ﬂ;‘.’L‘j)aj Ca‘”ieP(l‘j.l.], e ,333)
— eZWiaaj/keTIr‘iGP(mj, .. ,xs) = P(.'ZJ, v ,1‘3).

O

Note that one may take for a; the product of k; by the non-integer part of
3" ager/nk. In particular, if k; = 1, one may omit the term z;. If z; is real, then
k;j =1 or 2 and the argument goes through.

LEMMA 7.3. The conclusion of the previous lemma is valid if some of the k;’s
are infinite. If ks = oo, take a, =0.

Proor. If k, = 00, one may take a; = 0 and obtain a I-invariant constant,
or replace z, by z,T, which is also I'-invariant. If ¢ is the last index for which
k; is infinite, then, from Lemma 7.2, one has z7;}"-- -3 which is H;-invariant.
Now, I?,-_l/FIi & 81 acts freely on z; and acts as €% on g, for j = i,...,s,

. i (s 11 o O
with n; = 1. Hence, e*?(z;}4'---z5°) = eXmi% g1t .. 2% One may then choose

a; = — Y njoy and z3* ... z3° will be, by the proof of the preceding lemma, H; -
invariant. If k;_1 < oo, one applies again Lemma 7.2, while if k;_; = oo, one has

to repeat the above argument. |

It is easy to see that for Hy = S!, one recovers the invariants which appear in
the generators of [7].

THEOREM 7.1. If (H3) holds, then, for each H with dimI'/H = k, there are
T-equivariant maps with any given extension degree. In particular, Hgv (SW) =~
Mi_1 X Z X -+ X Z, with one Z for each H with dimI'/H = k.

PROOF. The second part follows from Theorems 5.1 and 5.2. It is then enough to
exhibit a map of extension degree d, for any integer d. Recall that dim W' > 1. Let
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U be spanned by (¢, Xo), (UT)*# by (z1,...,2s) and (UH)* by (zs41,... ,Zm).
Denote by z1,...,2; the z;’s for which k; = co. Let B = {t € [0,1],|| X0 <
2, |$J| < 2}

Define

Fy(t, Xo,z1y-- . ,ZTm) =
(2t+1 - 2T lesPP, Xo, O + izl — )28,
(A2 +i(l2s[® — 1))282, ..., (o1 +i(l2l® — 1))27F, (e + (2 — 1)) %2k,
{(Pj(®1,- - ,35) = )] i1, s.z5t1,m aviag €Cs
(Qs(w) = Vw5 {2 Yjmar1c m)-

The product in the first factor is over the j’s such that z; is complex or z; real
and k; = 2. Here Pj(x1,...,z;) is the I'invariant monomial given in Lemma 7.3,
ending with :1:;", if z; is complex. Also, Q;(y;) = yf- if y; is real and k; = 2,
Qj(y;) = 2 if y; is real and k; = 1. Note that, if y; is real and k; = 1, then y;
does not appear in the monomials F; and that I; = 1 if y; is real. The order of the
components has been chosen so that the notation is lighter; however, the terms in
z; and y; should appear in their corresponding place for W.

If k = 0 and there is at least one complex z;, replace P; by P{. If k = 0 and
all z;’s are real, then if s > 2, take two y’s, say y1 and yo, with k; = ky = 2 and
replace Q1 — 1 and Q2 — 1 by Re(y? — 1+ i(y2 — 1)) and Im(y? — 1+ i(y2 — 1))%.
If kj =1for j > 1,ie. I'/H = Zy, replace Q; — 1 and Q2 — 1 by Re(y} — 1 +iy3)¢
and Im(y? — 1 + 4y3)¢. Finally, if s = 1, replace Xy by a map of index d at the
origin or replace the first factor by Re(2t + 1 —2y% +i(y% — 1))¢ and the second by
Im(2t+ 1 —2y% +i(y? — 1))%y. Clearly, F; restricted to V¥ will lose the terms 3:;?',
j=s+1,...,m.

The zeros of Fy will be for Xo =0, A; =0, |z;| =1, |z;| = 1 if z; is complex or
if z; is real and k; = 2, y; = 0 if y; is real and k; = 1 and t = 1/2, i.e. with isotropy
type H. In particular, F4|V¥ 5 0 for all K > H. By replacing, as in [7, Theorem
3.1], the 1, in the term Pj(z,...,z;) — 1, by €; with |e;] = 1, one may choose
€; such that for z; = 1, one has no zeros on 9C, where C' is the corresponding
fundamental cell. Then, on By =BN{z; >0, j =1,...,k}, there will be exactly
[1k%; zeros, as one can easily see from the form of P;; for given x1,...,z;_1, one
has k; possible values for z;.

As in [7, Theorem 3.2], one may deform Fjy, near a zero {z0}, to (2t + 1 —
223, Xo, M +i(25-1),... , (A+i(2t—1))?, {x;—27}). The first term is deformable to
1—21, and the index of this map at {zg} will be —de, where € is the orientation factor
coming from the map (¢, A1,..., Ak, Xo,21,...,2k) = (21, X0, A1, 22, .. , Ag, ). It
is easy to see that one needs k(k + 1)/2 + kN permutations to get to the last
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arrangement, thus € = (—1)¥((*+1)/2+N) " Thys, deg(Fy; By) = —([Tk;)ed and,
from Theorem 4.1, degg(Fy) = —

Recall also that, from Theorem 4.1, all the zeros have the same index. For the
case k = 0, it is easy to see that one has a map of extension degree d. O

8. The One Parameter Case, k=1

Let V =R x U and assume that hy pothesis (H3) holds. Then, from Corollary
5.1 (b) and Theorem 7.1, IIL, (S%W) = SV’ (SW') X Z x -+ x Z, with one Z for
each isotropy subgroup H with dimI'/H = 1. Furthermore, from Theorem 5.3,

.S'V’ (8" = [[TI(H), over H with dim ['/H = 0. In this section we shall compute
these groups, recalling that, from Theorem 4.4, II(H) is an abelian group, the class
of [F] does not depend on the extension to | JB¥, K > H, and that F may be
chosen, if necessary, such that it has a trivial extension to this union. We shall then
assume that I' = IV is finite.

If H=T, dim UT = d, then TI(H) = SyII4(S¢1), where T is the suspension
by the map given in Lemma 7.1; ¥p is an isomorphism if U = W and d > 3,

Ii(H) = Sg(Zy) if d > 3 and T acts non-trivially on U, while this group is 0 if
d < 2. This part of the I'-equivariant class of F' is given by [FT].

As before we shall write any element of V¥ as (¢, 4, Xo,u1,... ,¥s, 21,. .. ) Zr)
with y; in R with T'/H; = Z5 and 2; in C with I'/H; & Z,,. Define B¥ = {0 <
t <1, |ul, | Xoll, lysl, |2i] < 2}. Set A =2t —1+ip.

If I'/H 2 Zj, then one may assume that I'/H = I'/H), k; = 2, k; =1 for
j > 1, the fundamental cell is glven by y1 > 0 and T acts as —Id on y; (the other
variables are fixed by I'/H). Let [F][‘ = [F]r — [FT]r; then we may assume that ¥
is (1,0) on V. Let s = dim V¥ — dim VT.

If s = 1, then there is an obstruction to extension to the set B N {y, > 0}
with boundary S, given by its class in M44+1(S¢), generated by the suspension n
of the Hopf map. For d > 2, let Xy = (xo,)?o) and let 7; be the map

((1/4— (1 — 1% — 2B)(1/4 — (31 + 1)? — 22), Ko,
Re(’\(yf -1+ izO)ay1)7lem()\(y% — 1+ izg),y;)).

It is clear that 7; is equivariant, 771|Sj‘,_ is homotopic to the suspension of the Hopf
map and that 7;{(8B¥) has the class of 27 in Iz, ;(S%). Hence, there is a dy, in
Zifd =2 and in Z, if d > 2, such that F and dim have the same obstruction on
Sd Thus, [ﬁ Ir — di[m]r = 0. From this relation d; is uniquely determined and
H(H) M4y1(8%). If d < 1, then ITy11(S%) = 0 and [Fr = 0 ([FT] is also trivial).
If s > 1, then, from Theorem 3.1, one has an equivariant extension to the
set B¥ N {y1 = y2 = 0} and an obstruction, an integer, to extension to the set
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BH N {y; = 0}. Note that on this set the action of ' does not satisfy hypothesis
(H), that is, we cannot guarantee, except if s = 2, the uniqueness of this obstruction,
given by the class of the extension to 8(B¥ N {y; = 0, y2 > 0}). Note that, from
Remark 4.1, the degree on B¥ N {y; = 0} is 0, i.e. there is no obstruction to non-
equivariant extension (one may also deform F' on the boundary of this last set, to
F(t, p, Xo,2, y2) which is not 0). However, let

dn = (1—y% — 42, Xo, X4 (v1 + iya), v5).

Then it is easy to see that the degree of dp on B¥ N {y; =0, yp > 0} is (—1)"+1d,
n = dim Xg. Thus, for some d, [ﬁ]p = [F|r — d[n]r has an equivariant extension to
BHEN {n = 0}

Note that if s > 2, then, from the fact that

X0\ (A% 0
o 1) \o I

represent the same class in II;(GL(R?)) if and only if d; and d; have the same
parity, one may restrict d to be 0 or 1, by deforming equivariantly din to dan by
the above argument. ‘

As before, the next obstruction will be the class of F in Mnt14s(S7H). Let
dim be the equivariant map

((4/3)(1/4 = (41 ~ 1)* = yi93)(1/4 — (1 + 1) — v}u),
Xoy?, X (14 — 1) + iyive), yivd).

Again, it is easy to see that dis = (1,0) for y; = 0 and that its class in
My s41(STH) is di[n] (deform ¢ to 1) and 2d;[n] in I, 4,41 (S™*). Hence, there
isad, (inZyifn+s8>2,inZif n=0, s=2) such that [ﬁ]p —dim]r=0.

From the fact that [F]r = d[n]r + di [m]r, one sees that, if n + s > 2, the class
of F in Il 4gp1(S™0) is d[n], hence the parity of d is uniquely determined by F,
thus, the first invariant d (in Z if s = 2, in Z, if s > 2) is unique. Therefore, from
the above formula, d; (in Z if s =2, n =0, in Zg if n+ s > 2) is also unique. We
have proved the following:

THEOREM 8.1. If T'/H =2 Zsy, then
Zo xZs if 8> 2,
A2 ZxZy; ifs=2 n>0,
ZxZ ifs=2, n=0.

Consider now the case of a general isotropy subgroup H. Let C be the corre-
sponding fundamental cell. As in the proof of Theorem 3.1, we shall extend and
modify a given element [F]r of II(H) to an equivariant map F' without zeros on
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8C. There will be obstructions to modifications on each of the faces of 8C (i.e. with
just one y; = O or one 2; with Argz; = 0). As seen in the proof of Theorem 3.1,
the value of F' on an edge Argz; =0, Argz; = 27 /k; may be given by the value on
a face Arg 2z, = 0 for some k < i. Thus, one has to start with the first face, modify
F so that the new map will have a non-zero extension on that face and work the
way up on the faces. For F one will have a last obstruction, in Zs, for the extension
to C.

Consider first the face y1 = 0. If the intersection of the H;’s, i > 1, strictly
contains H, then there is an equivariant (non-zero) extension to that face for any
element of II(H). If this intersection is H, then from Theorem 3.1, one has an
integer as an obstruction to I'-extension (note again that (H) is not satisfied) given
by the class of an extension to the boundary of the fundamental cell C’ of that face.

Assume y1,%s,-.. ,¥s have the same isotropy Hi. (If y; is the only coordinate
with isotropy H; and ) ;>1 Hj = H, then one may reorder the coordinates and put
y1 at the end; y; will play no role in the new fundamental cell). Assume s > 1 and
let

dm = (2t +1 - 2] [ la®(F + 3, Xo, X1 + i),

(Qi — Vi, (Pi(yr + iy2, ... ,3:) — Ei)‘”f:'-)

where the product in the first term is over ¢ > 3 with k; > 2. Moreover, Q; is y;-" if
k; =2and 2 if k; = 1. Finally, P; is defined, as in Lemma 7.2 with P, =0 if k; = 1,
as an invariant monomial such that, if yo = 1, y1 = 0, then the set {Q; — 1, P, —¢;}
has exactly |H; /H| zeros with |z;| = 1 and just one in C’, and A= pti(yi+y2-1).

It is easy to see that deg(dm|y,—0;C’) = (—1)™d. Since (~1)" is an orientation
factor, due to the chosen order of the components, we may assume that it is 1, since
if not we change X to its conjugate.

Now, the problem of finding an H;j-equivariant extension for y; =0, y, > 0 (y2
considered as a parameter), given a I'-equivariant non-zero extension to B¥ N{y; =
0, yo = 0}, is classified by the invariants of Theorem 6.1. Here, since F has
an extension to | JBX, K > H, one has deg(F¥; BX) = 0. Thus, dx = 0 for
K > H and degy (F; BE N {y; =0, y» > 0}) = dp,, with deg(F; B n {y =0,
y2 > 0}) = |Hy/H|dy,. Note that the fundamental cell for this H;-extension is just
Cn{y1 =0, y2 > 0} and that the generator (as seen in Theorem 7.1) is 7; |y, =o.

Let diy = dg,; then the map [F]r — di[m]r will have a non-zero extension to
the face y; = 0.

REMARK 8.1. If s > 3 and the F;’s do not depend on y;, then one may show
that 2[m]r = 0, as above.
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For a face of the form Arg z; = 0, or for a pair of real variables with z; = y; +z‘y;-,
y; = 0, y; > 0 as above, if one considers C N {z; = 0}, then there is always, from
Theorem 3.1, an equivariant extension (if the isotropy of the face is K > H, then the
extension is given a priori). Assume F’ has been modified to [F]r — }, <jdi [F]r, a
map without zeros on the faces Argz; =0, i < j. In order to get an H;-equivariant
extension to the ball BY¥N{Argz; = 0}, one has again that the H;-class of this map
is 3 dk[Fk], H < K < H; with the relations, given in Theorem 6.1, between the
ordinary degrees and the dx’s. Since the above map has a non-zero H,-extension
to BX N {Argz; = 0} it follows that dx = 0 if K > H and dy is the degree of
the above map on the corresponding cell C;. (Note that C; and C coincide in the
variables x;, i > j.) The ordinary degree of this map on B¥ N {Argz; = 0} is
|H;/H|dg.

Now, the set B N {Argz; = 0} is covered by |H;/H| disjoint replicae of
C;, on each of which the map has the same degree dg. On the other hand, this
set is also covered by the disjoint sectors 2mp;/k; < Argz; < 2n(p; + 1)/ks, i # 3,
pi=0,...,ki_1, Argz; = 0. There are Hz;e;‘ k; such sectors. Notice that ], 4 k;, =
|T/H|/k; = |T/H;||H;/H|/k; = |H;/H|m;/k;. Now, there are v; in I'/Hy, 73 in
ﬁ]_/ﬁz, R T 11} I:Ts_l/H such that such a sector will be sent into C under 7y, .. .7,
(in fact into the image of {Argz; = 0} under ;...7j_1 = 7, since ~; fixes this
argument for ¢ > j). There are m;/k; possible such hyperplanes in C. The part
of the boundary of the sector corresponding to Argz; = 2np;/k; or 2m(p; + 1)/k;,
i < j, is sent to Argz; = 0 or 27 /k; where the modified F has a non-zero extension
(hence to the intersection with the m;/k; hyperplanes). If i > 7, that part of the
boundary of the sector is sent into the corresponding part of 3C, without moving
the previous 2’s, including z;. Hence, from the construction of the modified F, one
has a non-zero map on the boundary of each sector with equal degrees, by applying
v and using Argz; as a deformation parameter. Thus, the degree of the modified
F on BH N {Argz; = 0} is a multiple of [1i; k. Since this has to be true for any
such map, this implies that dg is a multiple of m;/k;. Let

d’ﬂj = (2t +1-2 H ll‘ilz, Xy, (Q,, — l)y.,'_, XdZ;j, {(Pi(a;l, . ,.’E,;) — Ei).’lif-"' },,#J)

where A = p + i(]2;|2 — 1), the product is over all the variables except y; real with
ki =1, P; is again the [-invariant polynomial such that the set {Q; — 1, P; — ¢;}
has, for z; =1, Hi# k; zeros, with |z;| = 1, and just one of them on the face of C
corresponding to Argz; = 0.

The degree of dn; on that face of C is (—1)™d (again in order to avoid carrying
this orientation factor, one may change 2 to its conjugate if n is odd), dn; is trivial
when restricted to previous faces of C, Argz; = 0, ¢ < j. Finally, the ordinary
degree of dnj;, on B¥ N {Argz; = 0}, is (~=1)"d[],; k.
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Note that dn; is I-deformable to the map
~ 1 ol
i = (1= TT Il Xo (@ = D M55 (. = el hos )

where the product is over all z; (z; = y; +14y; for real 3;) and a; is the exponent of
z; in the monomial of Lemma 7.2. Here, A = p+4(2t — 1).

Hence, dn; generates all possible obstructions on the face C N {Argz; = 0}
and does not modify the previous construction. One has an integer d; such that
[Flr = > i<; di[m]r is non-zero on the faces of C with Argz; = 0, ¢ < j (this
extension is then reproduced by the action of I' on the other faces).

Thus, one may construct a step-by-step modification of F', with integer obstruc-
tions d;. Note that d; depends only on the extension to C N {z; = 0}, from the
Hj-extension argument and

(TI4)d = dog (193 = S ibndes 57 0 thrgzy = ) ).

i#j i<y

REMARK 8.2. Note that at each step F' is modified on the subsequent faces.
In the above formula [F]r — 3, ; di[m]r stands for a I~homotopy on 8B# and
for an extension to the faces C N {Argz; = 0};<;. However, the homotopy has not
been extended to these faces and, in particular, there is no relationship between
the ordinary degree of F' on the face {Argz; = 0} and the sum of the degrees of
d;n; on that face and even less with respect to the degrees on B¥ N {Argz; = 0},
except, as we have seen in the above proof, for the first face for which F has no

extension.

In order to extend [F]r — 3 di[n:]r to C one has a last obstruction, this time in
Zy. A generator for this obstruction is given by the map

dij = (52 — H 22| P — €n|?, Xo, (Qi — 1)ws, (B; — &)z, A4 (P, — en)zi;‘)
iF#n

The constants ¢;, with |¢;| = 1, are chosen such that the set {Q; — 1, P, — ¢;}
has |T'/H| zeros, with |z;| = 1, and just one of them, X°, in C. Note that k, may
be 1. As before z,, is treated as y, + ¢y, if I'/H, = Z3. One chooses € so small
that the disc | X — X?|| < € is contained in C. Hence, the only zeros of dij in C are
for z; = 29, A =0, |z, —2%|? = €2 and on 8C one may deform dij to the suspension
of (€2 — |y — 222, A4(z,, — 20)), which is d times the Hopf map.

REMARK 8.3. Note that the non-equivariant class of Elv?] with respect to 0BH
is |I'/H|d times the Hopf map, since on each of the replicae of C one obtains the
same class and that, by construction, 2[f]r = 0. This last fact can also be seen
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directly if one suspends 7 by z! such that z, and z] have the same isotropy,
with |T'/H,| = m. In fact, one may use, in the definition of 27, the equivariant
deformations €2 — H |2;12(| Py, — €n)? + T|2%,|?) in the first component and then
((1- 'r))\z( n — €n) T +TAZIn | —TA(P, — €n) ks + (1 —7)2/). The map obtained
for 7 = 1 can be further deformed by ((1 — 7)Azl» + 7(F™2%7,)" (P — &),
7@ %7, ) —(1—7)Azlr (P, — €n)), recalling that T2}, is equivariant (as well
as Z™~1); by conjugating the second equation it is easy to see that this deformation
has no zeros for positive 7, hence that 2[f]r = 0.
Thus, one has obtained

[FIr = d;nyr + dllr

where d belongs to Z,, d; are obtained by the above construction and given by the
formula,

( Hk,)dj = deg ([F]r' — Zd,;[’l]i][‘; BH M {Argzj = 0})
i#] i<y
(Argz; = 0 has to be replaced by y; = 0, ¢ > 0 for the case of real variables).

Here the only extra hypothesis is the repetition of y; by y; The set of d;’s
is recursively and uniquely determined by the successive extensions to the edges
{#z; =0} (or y; = y} = 0 in the real case).

By setting a morphism II from ([[Z) x Zo into II(H); given by the above
formula, one sees that II is onto and its kernel is the set of all possible d;’s and
d’s corresponding to the trivial element (1,0). In order to make the computations
easier we shall assume that for each z;, with k; > 1, there is a 2} = z;41 with the
same isotropy, in U and W' In the real case this means that there are at least three
variables with the same isotropy.

Now, (1,0) can always be extended I'-equivariantly to the set {y; = y; = 0}
which has a fundamental cell of the form {y{ > 0} x C", where C" corresponds
to the same variables as C. On {y{ = 0} x C"” one may assume, by a dimension
argument, that this extension is still (1,0). By taking the extension (1,0) on the set
{y1 =0, y| > 0, ¥y = 0}, the degree of an extension with respect to B¥ N {y, =0,
y} > 0} is twice the degree with respect to BI N {y; =0, y; > 0, 3} > 0}, i.e. the
corresponding d; must be even.

If [(1,0)]r — 3 ;; ds[mi]r has been extended to {Argz; = 0};<;, then for 2; =0
one has a I'-equivariant extension, from the dimension. On the edge (2; = 0) the
fundamental cell C’ has the same form as the one for C, with zg- replacing z; and
|T'/H| replicae of C’ covering B¥ N {z; = 0}. From the dimension, one may deform
the map on 8C’ to (1,0) without changing the homotopy type of the map on (’,
relative to its boundary. Now, if d; = 0, i < j, or if d;7; is trivial on {Arg zj = 0},
then one obtains a partition of B¥ N{Argz; = 0} by the ball C’ x {0 < z; < 2} and
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its replicae, such that on (8C’) N {0 < z; < 2} one may extend the map by (1,0).
Hence, the degree of the map with respect to BF N {Argz; = 0} is a multiple of
|T'/H|. Thus, if d; =0, i < j, or if d;7; is trivial on {Argz; = 0} for all i < j, since
this degree is d; [],.; ki, it follows that d; is a multiple of k;.

Consider now the map

pFy = (2= [[ IRl + 15/%), Xo,
i#]

I A :
(Q = Dy, N2, (P = )2 {(P} — )2} s )

where P/ is the set of invariant polynomials where z; has been replaced by z;, such
that the set {Q} — 1, P/ — ¢;} has |['/H| zeros of the form vX°, with |2?| = 1, none
of which is on the faces Argz; = 0 or for Argz; = 0. The zeros of pF; are for
Xo=0,A=0, X =vX9 |z;| = 1. For Argz; = 0, the degree of this map is p [] k;,
while for Argz; = 0, i # j, the degree is 0 (the map is non-zero there). Hence, in
[pF;]r = 3 di[mi]r +d[fi]r, one has d; = 0 for i < j and d; = pk;. Furthermore, one
may replace, in the first component, 2 by 1/2+ (1 —7)3/2, obtaining an equivariant
deformation of the map on 8B¥ to a trivial map, i.e. [pFj]r = 0.
Taking p = 1, we have obtained the relations, for j =1,... ,n,

0 = kj[n;lr + Z djslnilr + d;[flr,

i>7
0=2[7r.

From these relations, one finds, using the equation 2[j]r = 0, that 2k,[n.]r = 0,
2kn_1kp[fn-1]c = 0, ..., 2[T ki[m]r = 0 and 2|T'/H|[F]r = 0 for any element of
II(H).

Finally, if one has a representation of the trivial map, 0 = 3 d; [7’]j]r+(ﬂﬁ]1", then
we know that d; is a multiple of k1; di = p1k1 (d1 is even for y; real). Substituting
the first relation in the above sum, one obtains that dy — p1di2 = p2ks. Continuing
this argument, one concludes

d]_ kl 0 0 e 0 D1
ds B di2 ko 0 0 P2
dn dln d2n d3n N kn Dn

together with the relation d = ¥ p;d; [2)-
Since, on the other hand, one may take the p;’s to be arbitrary integers, we
have proved that kerIT is generated by the above relations.
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THEOREM 8.2. Under the hypothesis of the repetition of the z’s, II(H) is
a finite group with generators [n;]r, [A]r, of order at most 2[T/H|, and relations
0 = kjnjlr + X245 ; djilmilr + d;[f]r, 2@ = 0.

It remains to compute d;; and JJ Since this computation is rather involved we
only indicate a way to do it. We begin by calculating d,,. For simplicity assume
that I; =1 for ¢ > n. Consider the map

Fu= (1= T leslllenl? + l24 /%], Xo, (@i = )iy {(Bs — €)2H }icn,
i<n
D (DL Y
The product is over all i’s, with k; > 1 if z; is real, P, = an,’f". Note that the
term @nQﬁﬂ_lz,(zk"_l)z = (P)*»~2|Qn|?2, is equivariant. Consider the equivariant
deformation

(1L =7)A — 7(Q, 251, 7(Q, 2 1) + (1 — T))\’“"_l(@anL"‘lz,gk"“lf)l").

On a zero, conjugate the first equation and take its (k, — 1)-th power. One obtains

the system
((1'- o> S ) ( Zen i ) =0
r (1=t ) \ (@ualr )t ) =0

The only zero of the deformed map is for A = 0, |z;| = 1, % # n, |2, |2+ |2, |? = 1.
Furthermore, for 7 = 1, the map has no zeros, that is, F,, is trivial. One may also
perform the equivariant deformation

(1~ T)Azb 4 72 (@, Q15 (ka1 yin
— 72l 4 (1= T) AR (@, Q1 gkn 1) )l

which deforms F;, to
Fl = (1 - H 2:]2(|2n|* + 124]?), Xo, (Q: — D)yi,
{(R — Ei).’L‘éi }'J<n: /\k"P.,(lk"_manL", Zﬁ"y {-’Ei}i>n)-

This map is non-zero on the faces of C, by choosing ¢; appropriately, except for
Arg z, = 0, on which it has degree l,,k,,. Hence,

One may also rotate A*» and obtain the components

(1= TT 1ol 4 24, o, Bty ).
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Replace P, by P, — €Ten, with 0 < e < 1, |e5| = 1. For 7 =1, one has a map with
zeros at |z;| =1,i<n, A =0,2, =0and |2,| =1 or |z,| = € and |2,|* = 1 — €2.
Divide B¥ into the two invariant sets B; = B¥ N {|z,| < ¢/2} and its complement
B,. One may compute the I'-degree on each one: X degr(Fp; BY) = R¢[F,r =
Yo degp(Frn; B1) + X degr(F,; B2), where X is the suspension by a trivial variable
(see [6] for these properties).

Now, degp(Fy; B1) = Zo[F,]r. On By, one may deform P, to 0, rotate back
Akn and obtain the map with components (Af»z!», 2/'») which contributes knlnlnnlr
to the I'-degree.

On 8B, one may deform linearly the first component to (e ~[] |z;|2(| P, —een|?

+ |2p]?)), replace P, — ec, by P, — €, and rotate back A*» to get the map with
components

(6 — [T 122U Pn = nl? + |23 12), Xo (P — €) (on=Dn gl z'l)

by choosing € < 1/2 so that any disc, with center at a point with |z,| = 1, does
not intersect dB,. Deforming |2;,[, in the first component, to 0 one has a map with
zeros at |z;| =1, A=0, 2, =0, |P, — €,|> = €*. Hence, degp(Fy,; By) is the degree
of this last map with respect to B¥, that is, the suspension of the class of the map

ﬁ'n.= ( H'le |P _Enl >X0,( 1)%,
(Pi — &)z, Xen (P, — €,)(kn=2in ln z,’f").

This map has no zeros on the faces of C, hence its class is a multiple of [f]r, which
is given by its ordinary class with respect to C, where the set {Q; — 1, P; — ¢;} has
just one zero. It is easy to see that this class is k, (ks — 2)I2 times the Hopf map,
in Z,. Thus, [Fn][‘ = knln[Ar and X[Fo]r = Z2knln([n]r + [[]r) = 0.

Now, from the equivariant suspension theorem ([11] and [6, Theorem B]), Xy is
an isomorphism if dim Xy > 3 (we shall study the suspension in the next section).
Hence,

knln([mm]r + [fr) =0
in particular, if k, is odd (1 for example), then dn =k, 2]

Construct a new fundamental cell C’, corresponding to moving the variables
zj, %}, and any other with isotropy Hj, at the end of the set {z,,... y&n}. This
will give new coefficients k;, with |TI/H| = [] k!, and new polynomials P/. In
particular, one may have k; = 1. Construct the map F; on the model of F, above,
but with P; replaced by P; and Py, z, by Pj,2;. It is clear that if ki > 2, then
[F{lr = 0 and that F} is deformable to (1 — ]'[1# |:1:,|2(|z,|2 +125[2), Xo, (Q: — )y,

’ Ik 2)lJl i
{(P! = €l by, NS B[S T Y ().
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By choosing €;, one may assume that there are no zeros on the faces of C
corresponding to Argz; = 0, i < j, while deg(FJf;BH N{Argz; =0}) =, [] K =
Lik; [1;4; ki- Thus, 0 = [Fjlr = Lik;[ns]e + 3255 Lidsilmlr +1;d;[7]r, since we may
assume that F gives the j-th relation. Let

= (1= T3P, Xo, (@4 = 1y,
i#j

: L (e L
{P! - a)oitYirss e} (737 = €3l3)2”  {mi}imn ).

That is, 7; is the last generator for the cell C’ if k; > 1. Since one may choose ¢;
such that n;- is non-zero on the faces of C with Argz; =0, i < j, and

deg(v;; C N {Argz; = 0}) = [T ki / [ [ ks = ks /K5,
i#j i#]
it follows that k} divides k; and [n]r = k;/k}[ns]r + Zis jd3; [mlr + d5 [flr.

If k; > 2, following the deformations given for F,, one will have [Filr=0=
Liks ([ ]r + [i7]r)-

By using the fact that {Q}—1, P/ —¢;} has just one zero in € and in C’, one easily
proves that [i]r = [f]r- From the above relations, one sees that dji = dj;k; and
ljd; = l;k;(d; +1). Note that the first equalities could be changed by a multiple
of k;.

If k; = 1, then [nf]r is a multiple of [i]r. On C’, x; is deformable to the

suspension of (1 — Izj|2|z’-|2,/\z;-", (zjz; — ejlzj|)z;-l"). By deforming linearly |zj|

j
to 1 and 2% to € and then to 1, one may replace €; by 0 and get the map

i i
1- |zj|2,)\z;-",ijz;-). Rotating A and Z;, one obtains (1 — |z,—|2,)\z;."_1,z;-), ie.
lj — 1 times the Hopf map. Hence, [#;]r = (I; — D[@Ir = (& — D[H]r = kj[n;lr +
Yis; Gislmle + d5[Alr

In order to compute d;; one could continue with the permutations of the vari-
ables zy,... ,z, and obtain different relations between the new generators. How-
ever, we shall not continue this process, except in particular cases, in Remark 8.4

and Theorem 8.3 below.

REMARK 8.4. We shall give an example of how to use the above ideas and
to complete Remark 8.2. Suppose I' 2 Zg acts on (z1,22) as (€*™%/3z;,e2"/9z,),
Taking C as {|z;] < 2, 0 < Argz; < 27/3), we get k; = ko = 3, = (1 —
|z1)2| 222, Az1, (2223 — €1)22), 2 = (1 — |21|?|22)?, (28 — 1)21, A22), where €; = ¢ is
chosen such that ¢/2 + k7 does not belong to [0, 27 /3]. ‘

One has the relations 3n; + ding + 31?"7' =0, 312+ 7 = 0. On the other hand,
one may choose C' = {|z2| < 2, 0 < Argz; < 2n/9} and ¥ = (1 — |23]?, 21, A22),
with the relation 97 + % = 0. It is easy to see that n; = 2’ + di7, o = 39’ + db7f
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where, in fact, d; = 0. Using the above relations one also has d; = 1, di + Jl =1.
Furthermore, it is easy to see that the homotopy class in II5(S*) of 7, #’ and 7 is
the suspension of the Hopf map.

In order to compute the class of 7 one may rotate A and z to get (1-
|z122[%, Az120, (2122)%22 — 1), deform linearly (2122)%23 — 1 to 23 — (%1%2)2, and
then deform linearly 1 — |2122|2 to 1 — 23|, next zp — (2122)? to 23 — 22 and arrive
at (1 — |z1] — |22, Az122, 28 — Z3). Deform linearly the first component to |A| — 1;
then the class of 71 will be the suspension of the Hopf map multiplied by the in-
dex of the map (21,22) — (2122,25 — Z2). In order to calculate this index, one
may deform the first component to 2320 — e|21|2, with € small, then linearly to
7 — €z1. The index of (z; — €z1,23 — 75) can be computed by replacing z3 by
((1 = 1)z + T€z1)? and finally deforming € to 0; the index is —2, hence the class of
7 in II5(S%) is 0. Thus, d; = 0 and &1 = 1. The relations are 3n; + 72 + 7 = 0,
3nz + 7 = 0. Note that deg(m:1;C N {Argzz = 0}) = 0 (from the choice of ¢;) and
that deg(m; B¥ N {Argz; = 0}) = 2, while d; = 1, i.e. these numbers have no
relationship.

REMARK 8.5. Our definition of the generators 7; seems to be more complicated
than necessary, since if a variable z. has k. equal to 1, this variable should not
count. The reason for multiplying zls by P. — €. is the factor l,. If [, = 1, one
could define 7;, a new generator, bv deleting z; from the product [] |z;|? and not
including it in P; (as seen in Section 6) and leaving z. as a suspension. In this case
[milr = [ns]e + X4 ; @islmilr + d5[Alr, that is, {n;} can be chosen as generators in
place of {n;}.

This will be the case if U = W.

THEOREM 8.3. Assume V =R x W and k; = m; = |['/H;| for all j’s. Then
[Flr = Y dj[n;]lr + d[fr, with d; = deg(F; B¥ N Argz; = 0)/ [Liz; mi and the
relations for II(H) are m;([n;]r + [7]r) = 0, 2[7]r = 0.

PROOF. The condition k; = m; means that one has the same k;’s regardless of
the order in the construction of C. Hence, one may take P; = z;-"j , d; will be as
stated by putting z; as the first variable in the cell C. and the relations will come
by putting 2; as the last variable. The generators n; are the same, independently
of the order, and 7}, having no zeros in 8C, is a multiple of 7j, multiple which is
easily seen to be 1. O

We end this section by giving another description of II(H). Assume V =R x W
and I'/H & Zy, X X Zyp,,, generated by 1, ... , ¥m. Let X = {Z,2},... ,Z,,, 2! }
be a new space with the following action: v;Z; = e>"/%i Z;, v, Z; = Z;, i # j, Z;
the duplicate of Z;. For any F in II(H) take the suspension $xF = (F,Id) :
VH x XH - WH x XH.
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If one takes C x BY as fundamental cell, then any I-map G from V¥ x X
into WH x XH which is non-zero on the ball in (V x X)%, K > H, is classified by
the formula

[Glr = d;[Zxnj]r + d[=xFr
since the suspensions X x7; and X x7 are clearly the generators, by Remark 8.5, for
the group II(H) corresponding to V' x X. This formula also proves that X xTI(H) =
II(H).

But one may also choose the cell C’ given by {0 < Arg Z; < 27/p;}, which gives
the generators

dXynj; = (1 - I11251%, Xo, {2:}, {(ZF* — &) Zi}zs, f\dzj),

dzvii = (& = []12:P128 - eml, Xo, 2, (20 — ) Zibins,

i<m

A4 (ZPm em)Zm)_

Then [G]r = ) _d; [Ev’ﬂ;-]r-l-gl [Ev]r, since, as in Remark 8.4, one may interchange
Zj and Zp, in the definition of 7j'. Furthermore, one has the relations p;([Svn}]r +
[Ev7r) =0, 2[Zv7|r = 0. Since Ty is also an isomorphism, we have proved the
following

THEOREM 8.4. IfV =RxW andT'/H ~ Zyp, X-- XLy, , then any F in II(H) is
given by Ex [Flr = 3 d;Zv[n;]r +d'Zv [if Ir, with the relations p;([n;]lr+[7']r) = 0,
2[7r =0.

Note that in order to compute d;- one has to perturb X x F so that it has no
zeros on the edges of ', that is, for Z; = 0.

One may give a better presentation of the above relations. In fact, let [n;]r =
[mle + [@]r, 5 = 1,...,m, [no]r = [7]r; then II(H) is presented by [n;]r. j =
0,...,m, with the relations p;[n;lr = 0, po = 2. Now, given p;,p;, let p = (p; :
p;) = g.c.d.(pi, pj); then there are k;, k; such that p;k; + p;k; = p.

Let & = (pi/p)m — (pi/P)nj» & = kjmi + kim. Then (pi/p)&; = n; + kjéi,
(pi/p)€; = m — ki€ with p€&; = pimi — pjm; = 0,(pipi/0)é; = (piki/p)pimi +
(pjks/p)ping = 0.

Without taking into account the relations, one may express, in the basis &;,¢;,
these equations in the form

(g p«ap(:‘/p>=(pjklj/p pi;il/p) (% z:) (—kka ng)

where the non-diagonal matrices have determinant equal to 1, i.e. they are invertible
over Z. Thus, one may replace 7;,7; by &;,&; and p;,p; by (p; : p;) and the least
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common multiple of p;, p;. Note that p may be 1 and that if p = min(p;, p;), say
P = p;, then one may take k: = 1, k; = 0 and the change of variables does not
change the relations.

Continuing this process, it is easy to see that one arrives at a new set of
generators (o, ... ,(m and relations ¢;(; = 0 where go = (po : p1 : --- : D),
gm = Lem.(po,... ,Pm), g; divides g;11 and one has matrices M and N. invertible
over Z, such that @ = M PN, where Q = diag(qo,- - - ,¢m), P = diag(po, ... ,pm);
this is the content of the Fundamental Theorem for abelian groups [8, p. 57]. The
integers {q;} are called the invariant factors of P. If h;(A) is the highest common
factor of the principal (¢ x )-minors of a matrix A with integer entries, then one
may prove that h;(P) = h;(Q) if Q = MPN, with M and N invertible over Z. Fur-
thermore, since g; divides g;41, we have hi(Q) = [, ; g5, and h;(P) is the largest
common factor of all possible products of 4 of the p;’s. Hence, g; = h;(P)/h;_1(P).
Since the above results are true for arbitrary P and @, they will also hold for the
triangular matrix T of Theorem 8.2, where h;(T') = h;(diag(2, k1, ... , k).

THEOREM 8.5. IfV = Rx W and T'/H = Zy X --- X Zy,, then I(H)
Zgy X+« XLy, withgo =(2:p; t -+ : Pm), gm =Llem(2,p1,... ,Pm), ¢; = hj/hj_1
where h; is the largest common factor of all possible products of j of the p;’s or
of j of the k;’s for any fundamental cell, with corresponding k; > 1 and ky = 2.
In particular, if any two p;,p; are relatively prime and odd (or any two ki, k; are
relatively prime and odd) then II(H) = Zor/p.

REMARK 8.6. The case k > 1. As we have seen in Theorem 5.3, IS, (SW) =
[15II(H) and one has to compute II(H). From our previous discussion it is clear
that, for the case k£ > 1, one has to construct, on the boundary of the fundamental
cell C, a series of equivariant maps which will modify an element F' of II( H) until one
gets a trivial element in this group. Thus, for the piece of C given by Argz;, =0,
j=1,...,k,x; #0for j=1;,i=1,...,r, such that H, n---NnH, =H,I #i;
and the other variables being set to 0, one gets a ball B;, ;.. If on its boundary one
has the restriction of a I-equivariant map which is non-zero, one will need to see
if this map has an H;, N --- N H;, -extension to the ball. Thus, one will have an
obstruction in Hgi},lr:"'nHik CLaT

This group haé again a decomposition into subgroups II Hi - nH;, (K) for K's
such that H < K < H;; N---N H;,. Since the map F is extendable to BX for
H < K, the only surviving element will be in I, n..nm;, (H).

In order to compute this group, one will have to consider its own fundamen-
tal cell and look for obstructions to K-equivariant extensions, i.e. elements in
H?K(SWH), where S¥ is a sphere in I x VE N {Argz;, =0, H;, n---NH;, = K}.
The process will end when K = H with obstructions in IT, (SWH), i.e. an ordinary
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homotopy element, where n is the dimension of the sphere. Since there are at least
dimI'/H elements z;, needed in order to achieve the equality K = H, it follows
that n < dimVH —dimT'/H.

From each one of these elementary obstructions one constructs, from the re-
spective fundamental cells, a I-equivariant map Fj such that [F] = > [Fkx]. Of
course, one needs to follow a strict order in the construction, as seen in this section
and in Section 3, so that the inclusion of a map F), does not affect the preceding
maps. Clearly, this process depends on the choice of the fundamental cells and on
the preceding modifications, giving rise to relations between the generators.

9. The Infinite Dimensional Degree

In the infinite dimensional case we shall consider spaces E = R* x U x E‘, F=
W x E, where U and W are finite dimensional I'-spaces, with dim U¥ = dim W#,
where H is any isotropy subgroup for U, and E is an infinite dimensional I"-space.
We shall look at maps f(\,z,y) = (fi(A, z,¥), ¥y — f2(\, z,9)), where f> is compact.
Since f2 can be approximated by finite dimensional I'-maps, in this case the degree
is an element of IT5z (S¥), the inductive stable limit of HEVXV(SWXV), with V any
finite dimensional invariant subspace of E.

The existence of this stable limit requires that the suspension by any equi-
variant representation V contained in E generates a one-to-one map Xy, from
HngV(SWXV) into IL, v, (SW*VxW) if V is large enough. Although there
are general results on the equivariant suspension (see [11]), these are too restric-
tive for our problem (in particular they require that Vp is already contained as a
representation of V' x V, which is in general not the case in applications).

Let then V{ be an irreducible representation of I', generated by a real or complex
variable z with isotropy subgroup Hp (hence I’/ Hy is trivial or Z in the first case,
Zy,m > 3, or S in the second case). From Theorem 5.3, IIL, (SW) = [],, II(H)
and Iy v, (S77Y0) =[] II(H'), where H is an isotropy subgroup for V while
H' is an isotropy subgroup for V' x V5. The group H’ will be of the form H, with H
an isotropy subgroup for V, or H N Hy. Thus, if Hy is not an isotropy subgroup for
V, there will be more isotropy types for V x V; (at least Hp) and the equivariant
group for V x V, will have more components (unless trivial).

Let H' = HN Hy; then, if X € WH' one has H' < T'x = (N H;, 7 such that the
component z; of X is non-zero. Hence, H' < H=NH i, 7 for all possible variables
in WH', Thus, WH ¢ WH'. But, from the definition, we have WH' c WH. Hence,
WH =wH#' Furthermore, WH WHandH < H , hence HNHy < H'. Moreover,
H' < T implies that H' < H N Hy, thus, H' = H N Hy with WH' = WH. This
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implies that, if F' belongs to II(H’), where H' is not an isotropy type for V, then
F maps (BY*Y0)X" into (W x Vo)X'\{0} for all K’ > H’, in particular for K’ = H
which is not a subgroup of Hp. Then (V x Vb)ﬁ =VH and FH = F|z=0 # 0. That
is, F cannot come from a suspension of a non-trivial element.

On the other hand, if H' = H, then II(H') consists of maps from (V x V)#
into (W x Vo)¥ which map (V x Vo)X into (W x Vo)X'\{0} for all K’ > H, with
K’ equal to K or to K N Hy, i.e. for K > H. Thus, if H is not a subgroup of
Hy, then (V x Vo) = V# and (V x Vo)X' = VK (there are no K’ of the form
K N Hy > H in this case), and any element of II(H’) is an element of II(H). If
H < Hy, then (V x Vo)X =VE x Vo =VEx Vs if H< K' < Hy, KNHy = K’
with VE = VK’ if K’ is not an isotropy subgroup for V, while (V x Vp)¥ = VK if
K is not a subgroup of Ho. Thus, if F belongs to II(H), (F,z)X’ will be (F7, )
in the first case, or (FX,z) if H < K' = K N Hy, or FX if K is not a subgroup
of Hy, that is, in all cases different from zero. That is, Xy, F belongs to II(H’) for
H =H.

Hence, if [F]r belongs to II5, (SW), then [F]r = Y [Fu]r, where F belongs to
II(H), Zv, Fg belongs to II(H') with H' = H, Xy, is an isomorphism' if H is not
a subgroup of Hy. If H < Hp, then Fy is given by a sum of obstruction classes,
coming from ITZ, (SW"), for n < diim V¥ —dim T’/ H, as seen in Remark 8.6. In this
case z will remain as a dummy variable at each stage of the fundamental cells, that
is, the obstruction classes for II(H') will be in Hgﬂxvo (S’WH *Vo). In particular, for
(Fi, ) the obstruction classes will be the suspension of the classes for Fy;. From
the suspension theorem, one will have an isomorphism if n < 2dim W¥# — 2, for
any n < dimV¥ —dimT/H. In this case Xy; will be one-to-one from II(H) into
TI(H') and for any element G in II(H'), the obstruction classes will be suspensions
by z, that is, [G]r = 3_[Fk, zJr = [>_ Fk, z]r, therefore Xy, is onto.

We have proved the first part of the following result

THEOREM 9.1. (a) If dimW# > k+2—dimT/H for all isotropy subgroups H
for V with H < Hy, then Xy, is one-to-one. Ly, is also onto if Hp is an isotropy
subgroup for V.

(b) If Hy is not an isotropy subgroup for V, then Xy, will be onto only if k=0
and T'/Hy ~ S*.

PROOF. In order to prove (b) one has to show that II(H’) = 0 for all H' =
H N Hy which are not isotropy subgroups for V. Then Xy, will be onto (from
the ordinary suspension theorem) from II(K) onto II(K'), with K’ = K < Hj,
provided dim WX > k+1 —dimI'/K. If k = 0, this condition will always be met.
Now, for H = H N Hy = H N Hy, with VZ = VH' TI(H’) will vanish, from
Theorem 3.1, provided dim(V xVp)¥' —dimT'/H' < dim(W xV)¥', i.e. if dim wH4
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k+dim Vo —dimI'/H’ < dim WH +dim Vj, or else if k < dimI'/H’. This inequality
has to be true in particular for H' = Hy, where dimI'/Hy is 0 or 1. Hence, k = 0
and I'/Hp ~ S'. Then dimT'/H’ > 0 for any H' = H N Hp. =]

REMARK 9.1. The classical equivariant suspension theorem gives the following
conditions for ¥y, to be onto:

1) dimW# > k + 1 for any isotropy subgroup H for V.
2) dim WX "—dimW¥# > k+1 for any isotropy subgroup H for V and isotropy
subgroup K’ for V x Vp, with K’ < Hy, K’ < H but H not a subgroup of Hy.

For an isomorphism one needs k + 2 instead of £ + 1. The argument is by
proving that the suspension from IT%, (") into I, v, (SW*") is an onto or one-
to-one map. Now, this last group is the product of II(K’), with K’ an isotropy
subgroup for R**! x V; and K’ < H, hence, K’ is H itself or H N Hy if H is not
a subgroup of Hy. If H < Hy, then this suspension is the ordinary suspension and
(1) will suffice. If H is not a subgroup of Hy, then II(H N Hp) will be zero if, by
Theorem 3.1, dim(B™*! x Vp)#"Ho —dim H/HN Hy < dim(I x W x Vo)ENHo e, if
n—dim H/H N Hy < dim WH"Ho for all n < dim V¥ — dimI'/H.

One obtains the condition dim WH™o — dimW¥# > k + 1 — dimI'/H N Ho,
which improves (2). Since this condition has to be true also for H N Hy if Hy is
not an isotropy subgroup for V, it follows that WHNHo — WHNHo — WH and one
recovers the condition k¥ < dimI'/H’.

REMARK 9.2. Given the explicit generators for the subgroups II(H) if dim '/ H =
korif k = 0 or 1, it is apparent that Xy, is one-to-one for any Hy provided
dim W' > k+2if Hy =T and dimW# > 2 (always true if W¥ contains a complex
variable) for II(H) if k = dimT'/H.

Our final result is the following

THEOREM 9.2. If k = dimI'/H respectively, if k =0 or 1, then any element of
I(H) respectively, of ISy (SY), is the I'-degree of a map from Q into W provided
QF £,

PROOF. Given f : & — W, 8Q — W\{0}, recall that degp-(f;Q) is the class
of (2t — 1+ 2p(\, X), F(A, X)) in TIL, (SW). Since Q¥ # @ and Q¥ is open in
VH, there is an X° = (X%, X§,12,29) with 3 and 29 different from 0 in Q¥. By
changing variables we shall assume that A° = X§ = 0.

a) If dimT/H = k > 0 and dim WT > 1, let X, = (0, Xo) be a decomposition
of UT. Define zi = z;/|xY|, x5 = zo/R where R is the radius of a large ball
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containing €2. Let
50,20 = (2~ 2(TT g = 1), Kou O + i = D)t ..,
(M-t + (1242 = D)z, (M + i2p) 2, (Py (el -, 7) — 1)af,
(it 1) — Dus» (Q4) — 1)yj,x’;),

where P;(yj,... ;¥;) is the invariant polynomial based on the real variables for
k; =1 and Q;(y;) = y; is used for the case k; = 2.

Since |zj| < 1 in QF, the zeros of f on Q¥ have z; # 0 for all j’s and for
|z| = 1, as in Theorem 7.1. For 2; in Rt, j =1,... ,k, there are [] k; zeros, equal
to vXO, for some «y in I". For the map (2t — 1+ 2p(), X), f(A, X)) one may deform
¢ to 0 on 8(I » B¥) and rotate 2t — 1 and z{, to obtain (—z}, Fy), where Fj is the
generator of Theorem 7.1. Hence, one has the suspension of Fy, a map of I'-degree
equal to d.

If dim WT = 0, then f(\, Xo,0) = 0 and one needs that &' = @ in order to
define the I-degree of f. As before, let (0,z3) be a point in @ with 2 # 0 and
define A}, = Az/R. Let

fO,X) = ((,\1 +i(lZ]2 = 124, . Oy +i(|25)° — 1))25;_—;,
(M 23005 = 02 i = 1) )b (kB ) — ),
(121@3 (W) — D, (26l Pyl 4f) — 1)yj,xl;)-

If f(A\,X) =0 and z; =0, then z; = 0 for all j's and (},0) is in OF = §. Thus,
zx £0,|21| =1=...=|z| and, if 2 = 0, then \j, +23(|z}|? —1)2 > X, +2 > 0.
Hence, the zeros are for |z}| = 1, X = vX°. For the map (2t—1+2p(}, X), f(A, X))
one may easily check that its usual degree on the fundamental cell C is d.

b) If kK = 0 and one has at least one complex z;, then, as in Theorem 7.1, one
replaces P; by P{ in the preceding maps and, if all variables in Q¥ are real, then
one uses the maps of Theorem 7.1 in order to get the result.

¢) Ifk=1and |I/H| < oo and dim W" > 1, one takes the generators n; and
77 of Theorems 8.1 and 8.2, replacing 2t — 1 by z and z; by z}, as we have done
above.

If dim WT = 0, take the map

((Izé-lQi(yé) — Vi, (12| Biwhs - - - 5 48) — Vi (1251 Pi(Ls - - -, 20) — 1)z,

d
(w +2 (et =17+ 1 - 1) .5,
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The zeros in QF are for |2}| = 1, |}| = 1 and it is easy to see that its [-degree is
dnj;, as in Theorem 8.2.
For a map having the I'-degree of d7, consider

FOLX) = ((e-1|x:,| TI4E, - ea| P - )w
2
(u+i(€2 - [1‘[ 24P, — € |x:,|2) (HIwéIPA - )w’))

where P} stands for P;(y},...,%), Qi(y}) or Pi(zi,...x}) according to the different
cases. Again the zeros of f in Q are for |z}| =1, z; = v2?, i < n, |z, — v20| = ¢
and one has to compute the class of (2t — 1 4 2¢(A, X), f(A, X)) on 8C. There one
?l" and then to 1 and look at (2t — 14 2¢, e !|P, — ¢, |P! ~ ¢,
(1 +i(e® — | Pl — €n|?))%(P), — €,)). One may deform linearly the first component
to 2t — 14 2(| P, — €,|2 — €2), replace 2t — 1 by 7(2t — 1) in this component and
i(e? — | Py — €nl?) by 7(€2 — |P} — eal?) + (1 — 72)(2t — 1)/2, arriving at (|P, —
enl? — €2, 67 Y|P, — €4 | P! — €, (u+1i(2t — 1)/2)4(P., — €,)). One may clearly replace
€ !|P. —€,| by 1 and get the map dij. O

1l
may deform z;/ to z
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