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1. Introduction

Let 2 be a smooth bounded domain in R™ with n > 3, 2* = 2n/(r — 2) the
critical exponent for the Sobolev embedding of Hy%(2) in LP(€1), and A a real
parameter. In this paper we study the following problem:

Au+du+u¥"1=0 inQ,
PA(Q) {

u € Hy?(Q), u >0, in Q.

It is easy to verify (see [5]) that Problem P5(€2) has no solution for XA > A;, where
A; is the first eigenvalue of —A in Hy"* ().

If A < 0, the well known Pokhozhaev identity (see [24], [5]) implies that there
is no solution of Py() when 2 is starshaped.

In [5] Brézis and Nirenberg proved that, if n > 4, Problem Py (Q2) has a solution
for every A €]0, A1 [; the situation is more complex for n = 3 (see [5]) and a complete
answer has been given only if 1 is a sphere: in this case Py(2) has a solution if and
only if A €]A1/4, A1[. In [25] Rey proved that, for A > 0 small enough, the number

©1993 Juliusz Schauder Center for Nonlinear Studies

343



344 D. PASSASEO

of solutions of P,(f?) is related to the properties of the Green function of 2; in this
way he shows that, for A > 0 small enough and for n > 5, P,(€Q) has at least cat
solutions, where cat 2 denotes the Lyusternik-Schnirelman category of Q in itself.
Through a different approach, based on some ideas introduced by Benci and
Cerami in [2], it is possible to obtain, for A > 0 small enough, the same number of
solutions as Rey in [25], but under the weaker assumption » > 4 (see Lazzo [15]).
In this paper we will prove the following result (see Theorem 3.2 for a more

precise statement):

THEOREM 1.1. Let Q be a smooth bounded domain in R™ with n > 4. Suppose
that ) is not contractible in itself (i.e. catQ > 1). Then there ezists XA €]0, \q]
such that for every A €10, X[ Problem Py(Q) has at least cat Q+1 distinet solutions.
More precisely, if we set m = cat(Q and denote by S the best Sobolev constant (see
Definition 2.2), then for every A €]0,A[:

(a) there exist m solutions uyy, ... ,Um,x Such that
/(’ui,,\)T de < 8™%  Vi=1,...,m,
Q

(b) there exists at least one solution Gy such that

5m/% < / (@) dx < 25™/2.
Q

Notice that the solutions u; x, ... ,Um,» correspond to those found in [25] and
[15]; on the contrary, the solution %y does not correspond to the one obtained by
Bahri and Coron in [1] when A = 0 and Q is a bounded domain with nontrivial
topology (in a suitable sense). In fact (unless § has little holes as in [11] and [27])
the solution ug given in [1] corresponds, presumably, to higher energy values (i.e.
Jqud dz > 25™/2); hence the solution 7y cannot converge to ug as A — 0.

So the existence of the solution Z) points out a new phenomenon, and it is natu-
ral to deem that in domains €2 nontrivial in the sense of [1] (hence noncontractible),
for A > 0 small enough, there also exists a solution uy, distinet from those given
by Theorem 1.1, which converges as A — 0 to the solution obtained in [1].

Notice that the solutions uy 3, ... ,un,x converge weakly to zero in H&’Z(Q) for
A — 0 and concentrate near some points of 2 (see [6], [16], [26]); on the contrary, the
solution % can converge, under suitable assumptions, to a function % > 0, which
is a solution of the limit problem FPy(f2): Theorem 5.2 gives a sufficient condition

which guarantees this convergence.
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Moreover, if the solution %, does not converge as A — 0 to a solution of Py((2),
then it converges weakly to zero in Hé’2 (Q) and concentrates near two points of 2,
as one can deduce from Lemma 5.1.

The results in 4 show that the number of solutions of P,(Q2) is related not to
the topology of £, but to the topology of a domain Q which differs from Q by
a set of small capacity (see Definition 4.1): for instance, if ) is a noncontractible
domain, we can modifv (! by a closed subset K with sufficiently small capacity, in
such a way that Problem P, (2) with Q = 0 \ K has, for A > 0 small enough, at
least cat {2 + 1 distinct solutions, even if the domain € is contractible in itself.

Finally, let us point out that, if  has particular symmetry properties, then the
number of solutions may increase considerably (see 3.8 and 4.3): for instance, if
is a domain homotopically equivalent to the (k — 1)-dimensional sphere S;_; and
is symmetric with respect to a point zo ¢ §, then Problem P, (©) has, for A.> 0
small enough, at least 2k + 1 solutions, even if the category of Q is only 2.

2. Preliminaries and notations

Let £ be a smooth bounded domain in R™ with n > 3 and set 2* = 2n/(n — 2).

Throughout this paper we shall denote by || - ||, the norm in Z”(Q) and by
llwll 12y = || Du)), the Dirichlet norm in the Sobolev space Hy?(£2). By A; we
shall denote the first eigenvalue of the Laplace operator —A in Hy?(9):

A1 = min{||Dul|, : u € Hy*(9Q), |lully = 1}.

Every function u in Hy'?(Q) will be extended by 0 outside Q. Moreover, we set
ut = max(u,0), v~ = max(—u,0).
Let fx : Hy?(2) — R be the functional defined by

f,\(u)=/Q|Du|2dzv—)\/§;u2dx.

We shall consider f) restricted to

V= {u € HM(Q) /Q(u+)2* dz = 1}'

It is easy to verify that V is a differentiable C? submanifold of H}"*(Q) with codi-
mension 1.

The following lemma shows that the solutions of Problem Py () correspond to
the critical points of the functional f restricted to V.
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LEMMA 2.1. Let A < Ay and 2 be o bounded domain in R™ with n > 3. Then
the following properties are equivalent:
(a) u is a solution of Problem P5().
(b) u/||ulla« is a critical point for the functionel fx on V and

(n—2)/4
u U
v=|fa| 70— —_—
[ '\(I|U||2*)} ull

PROOF. It is easy to verify that (a) = (b) (notice that u/||ul|; € V because
u > 0).
Now we show that (b) = (a): let T = u/||u||2« be a critical point for fy on V.
Then we have _
AT+ XMT+p@)? T'=0 withpeR

It follows that w > 0: in fact, multiplying bv ™ and integrating, we get

/|Dﬂ_|2d:c—)\/|ﬁ‘|2dm=0.
Q Q

Hence, since [, |Dﬂ_|2 dz > A1 [, (E‘)2 dz, it follows that (A, — ) [, @) dz <0
with Ay — XA > 0, so @~ = 0. Therefore @ = @' solves the equation

AT+ N+ p@? =0  withpu=fi(7) >0

(because A < Ap); hence it is easy to prove that u = | fA(ﬁ)]("_2)/ “% is a solution of

Problem P5 (). O

Of course, the lack of compactness for the Sobolev embedding of Hy'?(Q) in
L?"(Q) causes some difficulties in finding critical points of fy on V.

DEeFINITION 2.2. Let S be the best Sobolev constant for the embedding of
H)?(Q) in L (Q):

§ = mt{|Dull? : u € HY(Q); [lul,. =1},

It is well known (see [5]) that S is independent of © and depends only on the
dimension n. Moreover, the infimum is never achieved when 2 is a bounded domain,
while if Q2 = R™ the infimum is achieved only by the functions

— Cy

U,z (z)= with » > 0 and zo € R",
i, 0( ) (#+ |x—$0|2)(n_2)/2 W 0
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(where ¢, are normalization constants).

LEMMA 2.3. Let Q be a bounded domain in R™ with n > 3 and A\, be the first
eigenvalue of —A in Hy*(Q). Then we have:

(a) If A <0, the minimum miny fx does not exist and infy f) = S.

(b) For all X € R we have infy fx < S; if X €]0,A1] and infy f\ < S, then
the minimum miny fx exists (notice that infy fy = —oco for A > A;).

(¢} If n > 4, then infy f) < S for A>0 (so miny fy ezists if and only if
A €]0,A)).

(d) If n =3, then there exists \* €0, A{[ such that infy f\ < S if and only if
A > A%

The proof can be easily deduced from well known results obtained in [5] (it
suffices to observe that for A < A; we have f(ut) < fi(u) for all w € Hy?*(Q) and
that, obviously, v € V if and only if u* € V).

LEMMA 2.4. Let Q) be a bounded domain in R™ withn > 3, X €]0,\{[, Sy =
infy fy (notice that Sy > 0 for A < A1). Then, for every c < (S;f/z + §n/2)2/n,
c # 8, the functional fx restricted to V has the following compactness property
(Palais-Smale condition): if the sequence (u;); in V satisfies:

Aa(us) — ¢ A} =0 in HH(Q),

then (us); is relatively compact in Hy*(Q) (it is well known that this does not hold
forc=_8).

The proof makes use of the following proposition:

PROPOSITION 2.5. For every A € R let F) : H&’z(Q) — R be the functional
defined by

1 *
Fy(u) = §/Q|Du|2d:c—g/nu2dz—2l*/n(u+)2 dz.

Suppose that (u;); s a sequence in Hy*(Q) such that

(Fa(us)); s a bounded sequence and Fj(u;) — 0 in H-1(Q). Then there exists
a subsequence of (u;);, (which we shall denote again by (v;);), a function ug in
H& ’2(9), which is a critical point for the functional F, and an integer k > 0 such
that w; — ug weakly in Hy*(Q) and

1 Duil|3 — || Duo|l3 + kS™2,
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F)\(U.,;) — F)\('U,(]) —+ %Sn/2

For the proof it suffices to argue as in [28]. Moreover, in our case we can observe
that the solutions of the problem:

Au+ (wh) =0 in R™,
u € L¥ (R?), |Du| € L3*(R"),

are nonnegative; so all nontrivial solutions are given by the functions (see [17], [29],

[14)
[ — 2)u] 2"
[+ 1 = o] 272

Upzo = with g > 0 and z¢ € R™,

which yields
/Rn | DU, 5| d = /Rn Uz, dz =S"/?
(see [29]).

PROOF OF LEMMA 2.4. The sequence (u;); is bounded in Hj%(f2), because
A < A; and the sequence (fx(u;)); is bounded.

Since f,l\|v(ui) — 0 in H~1(Q), it follows that there exists a sequence (u3); In
R such that

)2'—1

Au; + Au; + p,z-(u;" -0 in H‘l(ﬂ).

Therefore y; — fa(u;) — 0 and so u; — ¢ (notice that ¢ > Sy and S > 0 for
AL )\1)
If we set U; = p;(®~2/4y;, the sequence (Us), satisfies

m(U;) > lc"/2; "(U;)—0  in H Y.
n A

By Proposition 2.5, it suffices to prove that the integer & in that proposition is 0.

We have (1/n)c"/2 = Fy\(Uo) + (k/n)S™/? where Uy € HL?(£2) solves the equa-
tion AUy + AUy + (Ug-)z*—l = 0.

We claim that Up # 0: otherwise we would have ¢ = k?>/"S with k # 0 because
>0, k# 1since c# S, and k < 2 because ¢ < (S;"'/2 + §7/2)2/n < 92/ng.

On the other hand, U = 0 because A < A; and so Up > 0; moreover, it follows
that Fy(Up) > (1/n)Sy/? because fr(Uo/||Usllze) = Sh.

Therefore we have ¢ > (S;'/ 2 ¢ ks 2)2/n, which implies k < 1, since ¢ <
(S7/% 4 §7/2)2/n gecording to our assumptions.

Hence k = 0 and so (u;); (or a subsequence) converges to Up/||Up . in Hy(€).
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DEFINITION 2.6. Let 2 be a smooth bounded domain in R™ with n > 3.
Choose r > 0 small enough that

Ot ={z eR”: dist(z,) <7}, O ={ze€Q: dist(z,00) >r}
are homotopically equivalent to .
Let 8: V — R™ be the map defined by
B(u) = /s;:c(u"' (:1:))2* dz, Vu e V.
LEMMA 2.7. Under the notations introduced in Definition 2.6,
lim inf{fy(u) : w€V, Bu) T} > S
(we set inf @ = +oo if {ueV : B(u) €} =0).

PROOF. By contradiction, suppose that there exist two sequences (g;), in R and
(us); in V, with lim;_, o, &; = 0 and B(u;) € @ for i € N, such that lim;_, o f, (u;) <
S. It follows that lim; o fe,(u]) < S because fe, (u]) < fe, (u;) whenever ¢; < );.

Since [, |Du;*'|2 dz > S for i € N and

/Q (u;")2 dz < (meas 9)2/" (/Q (uf)z* d:c) 7 = (meas Q)Z/"',

we obtain lim;_, fn |Du;" |2d:1: = §. Therefore, by a well known result of P. L.
Lions (see [16]), we get lim;_,, dist(8(u;),2) = 0, which is impossible because
B(u;) ¢ QF for i € N. O

Lastly, we prove a simple algebraic relation which will be useful in the sequel.

LEMMA 2.8. For every p > 2 and all a,b € R,

(a+b)® > o + b° + paP~ b

PROOF. We have
a b
(a+b)? —ap—bp=p(p—1)/ dt/ (r+£P 2 dr
0 0

> bp(p — 1)/ tP~2 dt = paP~ b,
0
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3. Multiplicity of positive solutions

DEFINITION 3.1. Let Y be a topological space and X C Y. We say that the
Lyusternik-Schnirelman category of X in Y is m (and we write cat(X,Y) = m) if
m is the least nonnegative integer such that X can be covered by m closed subsets
of Y, each contractible in Y.

By the category of Z we mean the category of Z in itself: cat Z = cat(Z, Z).

THEOREM 3.2. Let Q be a smooth bounded domain in R™ with n > 4. Assume
that Q is not contractible in itself (catQ > 1). Then there exists X €10, A;[ such
that for every A €10,A[ Problem P\(Q) has at least cat$) + 1 solutions. More
precisely, if we set m = catQ and Sy = infy fy, then for each A €]0,\[ there exist
at least m solutions uy , ... ,um,x such that

S,\Sf,\( i )<S’ Yi=1,...,m,
l[4g,All e

and there ezists at least one solution Uy such that
iy

S<fA(—

_ < (S""/2 + Sn/2)2/n
||u,\[|2.) A

(notice that Sy > 0 for A < A1). Moreover,

inf { £y (Aﬁ—*) : A e]o,X[} > 8.
||UA||2*

For the proof, see 3.5 and 3.7.

DEFINITION 3.3. Let ¢ € C§°(B(0,7)) be a function with radial symmetry
such that 0 < ¢ <1 and ¢ =1 in B(0,r/2).
For every p > 0 set ¥, (z) = p(x)U,(z), where

[n(n — 2)u) "2/
@) = 3, e

Let @, : 2 — V be the map defined by

%@M=%§i@

(notice that S o ®,(y) =y for y € Q).
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We shall use the following lemma;:

LEMMA 3.4 (see [5], [7], {10]). Under the notations introduced in Definition

3.3:

[ 8= deip+ O(uln2/2) ifn>5,
@ R/l ={ T oW ey

() lullt < capn=2/4,
(©) llwull3 = 872+ O(un/2),

where ¢1, ca, c3 are suitable positive constants.
3.5. PROOF OF THEOREM 3.2. By Lemma 2.7, there exists X €]0, \;] such

that
inf{f5(u) : veV, Bu) €} >S.

Let A €]0, \[; then we have
inf{fx(u) : w€V, B(u) ¢ AT} > inf{fx(u) : weV, Bv) €O} > S.

Moreover, from Lemma 3.4 it follows that f(1,/[[%ull,.) < S for g small enough.

For every c€ R we set f§ = {u € V : fa(u) < c}; let cxp = fa(¥p/|1¥ully.)-
Then clearly ¢,(9;7) C fy*. As in [2] and [15], one can prove that for every ¢
such that

exu S e <inf{fa(u) : w€V, Bu) ¢ A},
we have
cat(®, (), f5) = cat(Q, Q) = cat Q.

Since ¢y, < S, from Lemma 2.4 we deduce that in the sublevel ff*'“ there exist
at least cat {2 critical points for f5 on V. Moreover, since {2 is not contractible in
itself (i.e. catQ > 1), we also have cat(®,(2.), f5) > 1, that is, ®,(£;) is not
contractible in f§ for any c such that

e <e<inf{fa(u) : ueV, Blu) € A}

Set
Gy =inf{ceR : &,(Q) is contractible in f§}.

Hence
S 2 f{fa(u) s ueV, Bw) €0} > S.

Notice that for € €]0,¢5 , — S| we must have

|y () s gy * % € Vi 1F3(w) —Bul <€} =0
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otherwise there would exist € €]0, € ,—S[ such that fc" % is a deformation retract
of fa""""g' but this is impossible: the set ®,(£2;), which is contained in j"cA wE
is contractible in fo**** but not in fo* ™, by definition of & ,,. Therefore, there
exists a sequence (u;); in V such that fi(u:) — @, and fy;,(u;) — 0 to H7(Q).
Then, in order to prove that €, , is a critical value for f) on V, by Lemma 2.4, it
suffices to prove that € ,, < (S¥/% 4+ S™/2)2/™ for y small enough. This fact will be

deduced (see Remark 3.7) from the following lemma.

LEMMA 3.6. Let Q be a smooth bounded domain in R™ withn > 4 and X €
10,\[. Let Sx = miny fy and ux € V' be such that Fa(uy) = Sy (this minimum
exists by Lemma 2.3 and clearly uy > 0 in Q, since A < Ap).

For every y € Q7 andt € [0,1] let us set

R C tup+ (1 - 1))
Uxu(y:t) = ltux + (1 — )@, (%)l

where ®,, : 7 — V is the function defined in 3.3. Then there exists i > 0 such
that for every p €10, L],

max{fx(@xu(,1) : t € [0,1], y € O} < (SY/% 4 5™/,

PROOF. Note that for every u € Hé’z(ﬂ) with u # 0 we have

ax 7—2/(|Du|2—/\u2)dw——i/|u|2*da:-7->0 ~\f
2 Ja 2 Jo o 3\

n/2
miw)|
8o it is equivalent to prove that, if we set

1 "
Fa(u) = 5/Q(|Du|2 _ 2l de— 2l*/n|u|2 de  Vue HM(Q),

we have, for u small enough,

max{F)(aux + #8,(y) : y€Q, a>0, 20} < <S"’2 +§™2).
Since
F(aux + p2,(y)) = %f,\(au,\ + 4%, (y)) - —/ (aux + 69,(y))* de,
we estimate separately the two terms: we have

Frlous + B2,(y) =c2Sx + B2 Ar(Bu(v))
+ Zaﬂ/Q[DuADtbu(y) — Aux®,(y)] dz,
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where
/ﬂ [DusD®,(y) — Auad,(y)] dz = Sy fn u? 18, (y) dz

because Auy + Auy + S,\uit"l = 0. Using Lemma 2.8 we obtain
/,, O + B8, W) dz > ¥ + 6% +2°a® 718 fn u? 19, (y) de.
Hence, if we set £,(y) = [, ui'_ltbn(y) dz, we have

a? R "
Fy(oux + 89,(y)) S?S" e T ?f)‘(”’bu‘ﬁz*)

+ap(Sr — ¥ e, (y)-

2%

2*

By Lemma 3.4, lim,_,o+ fx(¥/|l¥ullo.) = S, and moreover,

*_ @ _
@) < ua oy AL — o(un-2r%)
12,1

Therefore, if we set

2 2% 2
rle ) =55~ 5+ g ()
2"

132' + S 2% -2
— S+ aB(Sh — " ),
we have
lim T oo _of  Pg BTy + -
”LIR_'_ (aaﬁapﬂy)—_z_ )\_j o +'2_ = ox a’ﬂER aIldVyEQﬁ

moreover, there exist Z > 0 and two positive constants ¢; and ¢ such that
T(e, B my) <T@ —G(e® +8%)  Vuel,gl, Vo,f eRY, Vyc Q.

It follows that for all y € Q and u €]0,7i[ there exists a pair M, = (au,y, Buy)
with a, > 0 and B, 5 > 0 such that

F(aﬂ,uugﬂ,y’”‘v y) = ma.x{F(a, ﬂ’ Iy y) a Z 01 ﬁ 2 0};

moreover, the set {M,., : y € O, u €]0,7[} is bounded in R2.
If we set M = (Sf\"_z)/4, S(n=2)/4) we can prove that

lim sup{|M,y — Mlg. : y€ R} =0.
u—0+
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Indeed, suppose by contradiction that there exist two sequences (u;); — 0 and
(%:); € O such that

il_i)r{.]é(a”ivyi’ﬁl‘iyyi) = (a07 180) % M.
Then we would have

2* 2 2*
Qg 85 S By

2
. _ 0 /2 2
.il_l{&r(am,ynﬁm.yi’“iv %) = 7‘3)\ T o + 20T Tox T\L + 85 )s

while
lim 1-\(5(" 2)/4 S(n 2)/4 i ,yl) — _(S"/2 +Sn/2)

i—o0

in contradiction with the fact that

F(au.;,'yuﬂm,yi,#iy y-i) > I‘(S,(\n—2)/4v S(n—2)/4, iy y’L) VieN.

Hence the pair (c,y, 8,,y) is in the interior of Rt x R* for u small enough and
§0 necessarily g—g(au,y, Buy, 1, y) = 0, that is,

au,y(SA - 2 _2) + ﬁu,y(SA - (2* - 1) 2*_2)5;1(?!) =0,

which implies
Py (Sx = ALy %) < O(um=2/%),

Therefore we have

n/2
Mow,y, Buy 1Y) < Sn/z 1[f ( 1/)# )] +O(:”("_2)/2).
(7 P

Since fa(¥u/|[%pull,-) < S for g small enough, by Lemma 3.4 we deduce that
T'(auy: Bu,ys 4, y) is less than

%(s;/ 24572 ¢ %S("_Z)/z[—)\cut + O™ D/ 4 O(u=D/?)  forn>5
and less than

1, » 1

E(S)‘/Z + 8™2%) + ES("”)/Z [—Acapllogu| + O(W)] + O(n)  forn=4.

In any case
F(a#,y’ﬂﬂ,y’ﬁ" y) < ;(SA + )

for 1 small enough and so

1l on
max{Fy(auy + B8,(y)) : y€Q, & >0, B> 0} < E(SA” +8™/3),
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REMARK 3.7. In order to conclude the proof of Theorem 3.2, it suffices
to observe that ®,(f;) is contractible in each sublevel which contains the set
{8xu(y,t) : y € Q7,t € [0,1]}; hence we have

a\,ﬂ < max{fk(a)\,ll:(ys t)) ty€e, te [0’ 1]}
So we get T, < (S;"/ 2 4+ §7/2)2/n for 14 small enough.

3.8. Multiplicity of solutions in symmetrical domains. Notice that the
number of solutions of Problem P5(£2) for A small enough can be even considerably
greater than cat(2+1 if the noncontractible bounded domain © has some symmetry
properties. Suppose, for instance, that Q is a smooth bounded noncontractible
domain which is symmetric with respect to 0 (i.e. —Q = ) with 0 ¢ Q. Let the
genus of  (denoted by y(€2)) be the least nonnegative integer m such that there

exist m closed subsets F1, ..., Fy, in R®\{0} satisfying the following conditions:
FN(-F)=0 Yi=1,...,m and |J(FU(-F))>q.
i=1

Then one can prove (see [18]) that, if A €]0, ;[ is small enough, then Problem
P5(€2) has at least y(£2) pairs of solutions (u, %), with %(z) = u(—=z), such that
fr(u) < S. Notice that for A small enough, since 0 & 2,

inf{fa(u) : ueV, Blu) =0} > §

(see Lemma 2.7).

It follows that, if fa(u) < S, then @ # u because B(@) = —B(u) # 0. Hence
Problem Py () has at least 2v(§2) + 1 distinct solutions.

For instance, if (2 is a symmetrical bounded domain homotopically equivalent
to the (k — 1)-dimensional sphere S;_;, then v(f2) = k and so we have at least
2k + 1 distinct solutions, even if the category of 2 is only 2.

4. Persistence of the solutions with respect
to perturbations of small capacity

The results of this section show that the number of solutions of Problem P (1)
for A small enough is related not just to the topology of Q, but to the topology
of a domain § which differs from by a set with sufficiently small capacity: if Q
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is a noncontractible domain, we can choose a closed set K with sufficiently small
capacity in such a way that Problem P,\(ﬁ\K ) has the same number of solutions
as Py(€), even if the domain Q = O\K is contractible.

DEFINITION 4.1. Let B be a smooth bounded domain in R” with n > 3,
u € H“?(B), K C B. We say that u > 1 on K in the sense of H“2(B) if there
exists a sequence (u;); in C1(B) such that u; > 1 on K for all i € N and u; — u in
HY2(B). If the set

{ue H3f2(B) :u>1 on K in the sense of H?(B)}

is nonempty, the capacity of K with respect to B is the number
cappK = inf{/ |Du)? dz :u € Hy*(B),
B o
© > 1 on K in the sense of HI’Z(B)}.

Moreover, we set capgf = 0.

It is well known that there exists a unique function xx € Hy?(B) such that
J5 |Dxk|?dz = cappK and xx > 1 on K in the sense of H'2(B). Furthermore,
0<xx <1linB.

THEOREM 4.2. Let ) be a smooth bounded domain in R™ with n > 4. Suppose
that €1 is noncontractible in itself and set B = B(0, R) with R > sup{|z|g. : = € Q}.
Let (), be a sequence of smooth domains such that Q; C Q for all i € N and
suppose that lim; o capgK; = 0, where K; = Q\ Q;. Then there ezist A €]0, )|
and a map j : |0, X[ — N such that, if A €]0,A[ and i > j()), then Problem Py (),)
has at least catQ + 1 solutions (and one can give, for the corresponding critical
values, some estimates analogous to the ones of Theorem 3.2).

PROOF. We argue as in the proof of Theorem 3.2. Set
V; = v n HM D () Jix = fvis Sia = i{}iffi,,\-
We have clearly S; 5 > S, and
inf{fix(u) : w € V;, B(u) € BF} > inf{fa(u) : weV, Bu) ¢ A}
As in Theorem 3.2, choose A €10, ;[ in such a way that

inf{fa(u) :ueV, Bu) €2} >SS  Vieo, AL
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Then fix g > 0 such that

i (””—) <S<inf{fy(u) : ueV; Au) £ U}
lwull,.
< max{f)\(a)\,u(ya t)) Y€ Q;: te [0’ 1]}
< (S;/z + §™/2)2n

Since lim; .o, capp K; = 0, there exists a sequence (x;), in HS 2 (B) such that x; — 0
in Hy*(B),0< x; <1, and x; > 1 on K; in the sense of H'2(B) for every i € N.

Let &, : Q7 — V; be the map defined by

(1~ x:)®,(¥) Vy € OF.

. (y) = (1 = x:)®u ()|,

Moreover, set

_ (= x)tau(y,t)
(X = xa)nu(y, )l

5,,.(u,t) vVt € [0,1] and Vy € Q.

One can prove (as in the proof of Theorem A.1 of [3]) that ®%(y) and @} u(y,t) are
well defined because, for 7 large enough,

1(1 = x:)@u (@)l #£0 and
(1= xa)@ru@ Ol #0  Vy€Q., Vte[0,1].
Moreover, one can prove as in [3] that
Jim max{f; \(2,(v)) : y € O} = max{fr(2,(y)) : y €O}
and
lim max{f; x((y,2)) : y €07, t €[0,1]}
= max{fa(Uu(y:?)) : yeQ, te[0,1]}.

Hence, by the estimates obtained in the proof of Theorem 3.2, there exists j(\) € N
such that we have, for all i > j(}),

max{f,-,,\(tIJL(y) ry € Q< S<inf{fia(u) : ueV;, Bu) €}
< max{fin(@ (1) : y €05, te[0,1]}
< (3% 4 S22 < (SP2 4 Sn/2)Rn,
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Since Bo <I>Iﬂ is homotopically equivalent to the identity in O} because 8o @z (y) €
B(y,r) C Q for all y € Q, we deduce as in [3] that, if we set

= max{fin(@,(¥)) : y €O},
then we have cat(®}, (), f{,) 2 catQ for every ¢ such that
dh, Sc<inf{fix(u) : we Vi, Bu) € Q).

This implies that <I>L (€2;7) is not contractible in those sublevels ff, and that there

exist at least cat {2 critical points in the sublevel fic, 2*. Moreover, if we set

c),u = inf{c : <I>7;(QT_ ) is contractible in f7,},
then we have

S <inf{fin(®) : ue Vi, flu) 2} <55,
< max{fi,)\(ﬁi,p(ya t) ty e, te [Oa 1]}
< (S 4 gn/2)2m,

Hence, as in the proof of Theorem 3.2, from Lemma 2.4 we can deduce that ?5}", 18
a critical value for the functional f; 5 restricted to V;.

REMARK 4.3. Simple examples show that suitable perturbations of a domain
Q by sets with small capacity can modify its topology.

For instance, in Theorem 4.2 it can happen that €} is not contractible in itself
but the nearby domains ; are contractible. In this case the topology of the domains
€); would only guarantee the existence of one solution, while by Theorem 4.2 we
obtain at least three solutions.

Moreover, if the domain (2 and the perturbed domains Q; have some symmetry
properties, then the number of solutions increases even more. For instance, if we
suppose that 0 ¢ @ and that —Q = Q, —Q; = Q, for all i € N (besides the
assumptions of Theorem 4.2), then there exist A €]0, A;[ and a map j :]0,A[—» N
such that, if A €]0,A[ and i > j(}), then Problem P5(f;) has at least 2y(f2) + 1
solutions, where y(€2) is the genus of 2 (see 3.8). More precisely, there exist at least
~(£2) pairs of critical points (u, %), with &(x) = u(—x), such that fy(u) < S and & #
u; moreover, there exists at least a critical value between S and (S7/% + §n/2)2/7,
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5. Behaviour of the solutions as A — 0

The solutions uy of Problem Py (2) corresponding to critical values of fy be-

tween S and S satisfy
||DUA||2

’\_’0 ||“A||2*

In particular, this holds for the solutions 1, ... ,%m, given by Theorem 3.2.
Hence (see [5]) they converge weakly to zero in Hy'?(2) as A — 0.

One can also specify their asymptotic behaviour: each one concentrates near
a point of (2, as one can deduce from a well known result of P. L. Lions [16]; moreover
the concentration point is interior to 2 and is a critical point for the regularization
of the Green function of the domain  (see [6], [26]). On the contrary, the solution
4y, which satisfies

A

[1@xll2-

s < () < (S5 572,
under suitable conditions may converge to a function %y > 0, solution of the limit
problem Pp(f2); Theorem 5.2 gives a sufficient condition which guarantees this
convergence.

Notice that, when the solution %, does not converge to a solution of Problem
Py(Q), then it concentrates near two points, as one can deduce from the following

lemma.

LEMMA 5.1. Let Q be a smooth bounded domain in R™ with n > 4 and (\x),
be a sequence in |0, A1[ such that Ay — 0. For every k € N let @), be a solution of
Problem Py, (Q) and suppose that

m fy (_—) —ceR
* ”uz\k“?

(notice that ¢ €)S,2¥/"S[ if U, is the solution given by Theorem 3.2). Then we
have:
(8) Tk Fol@a, /a2 = €5 Fiyy (B /N, l2) = 0 i H1(Q),
(b) Ifc E]S 22/m8|, then there exists a subsequence of (@i,), converging in
H%(Q) to a solution Ty of Problem Py(1).
(c) If c=2%/mS, then at least one of the following cases happens:
1° there exists a subsequence of (@, ), converging in Hy*(Q) to a so-
lution Gy of Po(Q) (€ > 0); or
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2° there exist two sequences (1), (Z2,k), i Q and two sequences of
positive numbers (1), (€2,k), converging to zero such that:

. 1
lim
k=00 £; k

dist(z;,00) = 400 fori=1,2,

. €2k €1,k |1‘1,k - $2,k|
lim max{ ——, ==, ————=" % = 400,
k—oo €1,k €2,k Elk T E2k

=0,
H12(Q)

2
Uy, — Zﬁsi,k (z— zi,k)

i=1

lim
k—o0
where U (z) = [n(n — 2)5]("_2)/4/[6 + |:1r:|2]("—2)/2 fore > 0.

PROOF. Since @y, /@, ||5» is bounded in L?(f2), we have

o~ o~ 2 o~ ~ 2
fo( B, )_ [ D@ Il =ka( U, )+,\ l@llz

= = = = ko
[ P |12, [[@x ll2- 5 |12

Moreover, since f} |y (@x./[[@x [l2-) = 0, we have

’ aAk Y a)\k o a/\k
U, |2~ U, || 2~ U, || 2+
f°"’(|| ||) f"'V(n u> f*""’(ll ||)

’H—l(n) ‘H'l(ﬂ)

Uy , U
< f, (A—k> - (A—k) 1
0 ”u/\k”2* Ak “'u’>\k||2* H—l(ﬂ)
< AkC(Q) "DaAk ”2
- [ P

for a suitable positive constant c((?).

Since the sequence (uy,/|/Ux,[|5+), is bounded in Hy2(R), (a) is completely
proved. The assertions (b) and (c) follow from (a), upon using well known results
which describe the Palais-Smale sequences of the functional fy restricted to V' (see
[16], (28], (1], [4]). o

THEOREM 5.2. Let ) be a contractible smooth bounded domain of R™ with
n>4 and Q C Q be a smooth bounded domein noncontractible in itself. Let (),
be a sequence of smooth bounded domains such that L C §; C Q for alli € N, and
Q be a deformation retract of €. Set B = O\ and assume that ﬁ\ﬂ,; C B for
alli € N and lim;_ o, capp(Q\Q;) = 0 (see Definition 4.1). Then we have:
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(a) There ezists a sequence (X;); in RT such that for all A €]0, ;[ Problem
P(S%) has at least cat Q; + 1 solutions and one of them, which we shall denote by
Us,n, satisfies

S < fA(—A"L> < 22/ns,
(RN (P

(b) Moreover, there exists a positive integer j such that, if i > j, then for every
sequence (\g),, converging to zero in |0, X[ the sequence (s, ), has a subsequence
converging in Hy>(;) to a function @;0 > 0, solution of the limit problem Py(€Y;).

PROOF. (a) follows by Theorem 3.2 because §2; (as well as €0) is noncontractible
in itself. In order to obtain (b), it suffices to prove that

S <infd i =22 : xe)o, X[
25, all g
< sup {f,\(—uﬂ)‘—) : A E]O,Xi[} < 2?ng

(B P

for ¢ large enough, and then to apply Lemma 5.1. Set V= {u € ng(ﬁ) :
Jo @ =13,V = V n HYA() and fix = faw. Fix 7 > 0 sufficiently small
such that QO = {z € Q : dist(z, 89) > r} is homotopically equivalent to £} and also
Q.,Q;f are homotopically equivalent to Q. Let Z > 0 be such that (see Definition

3.3)
Y )=||D¢u||§ (ﬁ)%s o
fo(”'(ppllz* ”,lp””g. < 2 ﬂe]o,p,]_

Define 5ﬁ : Q- -V by

Yu(z —y)
l¥mlly-
Since lim;_, o capB(fl \ ;) = 0, there exists (see Definition 4.1) a sequence (xi);
in Hg’z(B) such that 0 < x; <1, x; > 1on S~)\Q¢ in the sense of H2(B) for all
i € N and lim;_,0 [ |Dxi|* dz = 0.
Let ®% : 07 — V; be defined by

a- xz-):f’ﬁ(y)
11 = x:)@r(@)ll,-
Arguing as in the proof of Theorem A.1 of [3] one can prove that the map Slﬁ is
well defined for i large enough, because ||(1 — xi)ég(y)ﬂz* #0fory e ﬁ; , and

moreover we have

Jim max(o@5) v € ) = mexfo@) v €87} = o (- ).

Bu(y)lz] =

Bi(y) = vy € Q7.
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Since fo(¥g/||¢zll,.) < (3/2)2/"5, there exists j € N such that

3 2/n . .
max(o@00) v B < (3) 5 vis
For every i € N, choose r; > 0 sufficiently small such that
= {z e R" : dist(z, ;) < n}
is homotopically equivalent to ;. By Lemma 2.7 there exists ; > 0 such that
inf{f5,(u) : eV, Bu) € Qf}>S.
Let &, : Q7 — V N Hy?(Q) be defined as in Definition 3.3. For every A €]0, X[
we can choose g €0, 7] in such a way that
%\ _ . -
I =max{®,(y) : y €N} < S
1l
<inf{fs,(u) : wueV;, B(u) & O}
<inf{fa(u) : ueV;, Blu) €QF}.

It follows (as in the proof of Theorem 3.2) that for every ¢ such that

f)\( Yy ) <c<inf{fir(u) : veV;, Bu) ¢ Qj}
1%l

we have
cat(®, (), f£y) = cat(Q,,Qf) = cat Q; = cat O > 1.

In particular, we deduce that ®,(f;) is not contractible in the sublevel fiy for

every c such that

fa ( Yu ) <c<inf{fi(u) : weV;, Blu) & Q}.
(1%l e

Set
& . =inf{c : 8,(Q) is contractible in ik

As in the proof of Theorem 3.2 one can prove that ¢} u 18 a critical value for the
functional f;  restricted to V;.
Let us prove that for all ¢ > j and A €]0, A;[ the set @, () is contractible in

the sublevel i
n
fﬁﬂ)zlﬂs = {u eVi: fialw) < (g) S}'
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Indeed, let © : ©,(Q;) x [0,1] — V; be defined by

Ql-‘t (y) Vt e [0’ 1/2]7 Yy € Q;:

@(@“(y),t) = { gg(ﬂ(y,t)) vVt e [1/2, 1], VyeQr,

where py = g+ 2t(F — p) and 9 : Q7 x [0,1] — € has the following properties:
Hy,0) = y for all y € (I and there exists yo € €2 such that Hy,1) = yp for all
y € Q (such a & exists because 2, as well as ©, is contractible in itself).

Let us note that the function © defined above is continuous because ®z(y) =
a"ﬁ(y) for y € Q since xi(z) = 0 for z € Q and ®z(y) € Hy?(Q) for y € Q7
moreover, obviously

O(2u(y),0) =2,(y) VyeQ and
O(®u(y),1) = ¥i(wo)  Vye ;.

It remains to prove that
/n
0(2,(v).t) € FYP™  Wyeq; and Vi€ [o,1].

To this end it suffices to notice that for all y € Q7 and ¢ € [0,1/2] we have

wy’t 3 2/n
A < h@u) = 5(=) < (3) s
¢ llo»
(by the choice of f); for all y € Q7 and t € [1/2,1] we have

A@LB(y, 1)) < fo(BL((y, 1))
< max{fo(®(y)) : y € O}

3 2/n
(by the choice of j € N). It follows that
. 3\ -
Au< (—) S Vi>jand VA €]0,)]
On the other hand, since ®,(f2;) is not contractible in the sublevel [y for

c<inf{fia(u) : ueV;, B(u) € O},
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we have, for all A €]0, \;],

B 2 Inf{Ar(w) : wE Vi, Blu) ¢ 0F)
>inf{f5,(v) :ueV, Bu) €0} > 8§

(by the choice of A;).
So, if we denote by @; » the solution of P5(f;) corresponding to the critical

value ¢ ,, then we have

S <inf{f5 (u) : ueV, Blu) €O}

Si“f{f*(unnz*) Aepf

A _ 3 2/n
< sup {f,\(llAuA'l\l ) : A €]o, )\i[} < (5) S < 2%/ng.
1, 2%

Then it suffices to apply (b) of Lemma 5.1 to conclude the proof.

REMARK 5.3. Assumptions like those of Theorem 5.2, concerning perturba-
tions of small capacity of the topology of 2, have already been considered in [21]
and [23]. However, in those papers we considered directly Problem P, (€;) and the
aim was to study the multiplicity of the solutions of Py(Q;) with respect to the
shape of the domain ;.

Notice that in [21] and [23] the assumptions on €; and Q were used to obtain
existence and multiplicity results for Problem Py(£;); on the contrary, in Theorem
5.2 such assumptions have only been used to guarantee the convergence of the
solution ; » to a solution @;p of Py(£;); indeed, the existence of the solution @; »
comes from Theorem 3.2 and so it is independent of such assumptions.

Notice that the conditions of Theorem 5.2 are satisfied by domains with “little
holes” considered by Coron in [11] and by Rey in [27]; in such domains the solution
;0 corresponds to those obtained by Coron and Rey.

Finally, let us mention that under the same assumptions of Theorem 5.2 it
is also possible to prove (as in [23]) that lim;_,o (s 0/||%: olls«) = 8 and so ;p
converges weakly to zero in Hy'? %(Q)) as i — 0o and concentrates near a point of €
(see [16]).
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