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1. Introduction

The famous Knaster-Kuratowski-Mazurkiewicz theorem is a fundamental result
of nonlinear analysis. More than twenty years ago, Peleg, in a paper on the existence
of equilibrium points in many-person games [14], gave an interesting generalization
of this theorem, concerning closed subsets of a product of simplexes. But it seems
that this result of Peleg has not been exploited in nonlinear analysis. The purpose of
this paper is to obtain, from Peleg’s theorem, some generalizations of fundamental
results in this field.
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In Section 2, we give an extension to topological spaces of Peleg’s theorem which
is paralle] to the Horvath’s extension [8] of Knaster-Kuratowski-Mazurkiewicz’s
theorem.

The main result in Section 3 is a generalization of Fan-Browder’s fixed point
theorem, involving multi-valued mappings from the product of a finite family of H-
spaces (in the sense of Bardaro and Ceppitelli [1]) into each of its factors, obtained
from the basic lemma of the preceding section.

Section 4 is devoted to Ky Fan type inequalities, which, analogously to the
classical case, are shown to be equivalent to their corresponding Fan-Browder type
theorems of Section 3.

Finally, in Section 5, we present a generalization of Ky Fan’s intersection theo-
rem for sets with convex sections.

We shall denote by “co” the usual convex hull operator in a vector space. Given
a multi-valued mapping between two sets, T : A — 28, we write T-1(y) = {z €
A|yeT(x)} (y € B). If z is an element of a cartesian product X3 x ... X Xy,
its k-th component will be denoted by zx, whereas 2 will represent the element
in Xz =X; x...x Xg—1 X Xg41 X ... X X, obtained from z by deleting its k-th
component; in this way, (x”e,mk) may be regarded as identical to x and, more
generally, an element of the form (.’L‘E, y*), with y* € X}, will be interpreted as the
point of X obtained from z by replacing its k-th component by y*.

2. The fundamental lemmas

Our starting point is the following generalization, due to Peleg [13], of the

famous Knaster-Kuratowski-Mazurkiewicz theorem:

LEMMA 1 [14]. For k=1,... ,m let Ny be a nonempty finite set and

Sk={ak:Nk—>]R

af(i) 20 for alli € Ny, Y (i) = 1}.
1EN
IfCF, i€ Ni, k=1,...,m, are closed subsets of S =51 X ... x S,, such that fc-)'r
each@Q C Ng, k=1,...,m,
U cF o {(a,...,a™) € §|ak(i) = 0 for alli € N\ Q},
jeQ

then

m

) ) ck+o.

k=1i€Ny,
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When m = 1, the preceding lemma reduces to the classical Knaster-Kuratowski-
Mazurkiewicz theorem. In the same way as Horvath obtained a generalization of the
latter to topological spaces, with a family of nonempty contractible subsets playing
the role of the faces of a simplex, we shall state below (Lemma 3) the corresponding
more general version of Lemma 1. We shall use the following lemma, which was
proved by Horvath (see the proof of Theorem 1 in [8]):

LEMMA 2 [8]. Let X be a topological space, N a nonempty finite set and, for
each ACN,

SA={a:N—»R‘a(i)ZOforallieN,

> a(i)=1, a(i) =0 forallic N\A}‘
ieEN

If{Talozacn s a family of nonempty contractible subsets of X, indexed by
the nonempty subsets of N, such that A C B implies Ty C I'g, then there is

a continuous function f : Sy — X such that f(S4) C T4 for each nonempty subset
ACN. O

LEMMA 3. For k = 1,...,m, let X} be a topological space, Ny a nonempty
finite set and {T%}p1acn, a family of nonempty contractible subsets of X) such
that A C B impliesTX CT%. IfCF, i € Ny, k=1,... ,m, are closed subsets of
X = X1 %...X Xm such that for each (A1, ..., Am) € (2N \{0}) x...x (2V=\{0}),

rglx...xrfgmcﬁ | ¢k,

k=1i€Ay
then
m
M ) cF+#o.
k=14EN}
ProOOF. By Lemma 1, for each £ = 1,...,m there is a continuous function

fr + Sy, — X such that f,(S4,) C F,klak for every nonempty subset Ay C Ny, with
S4, denoting the set

SAk={aZNk—>]R

a(i) > 0 for all i € N, Z a(iy=0forallie N\Ak}.
1EN)



280 E. MARCHI — J. E. MARTINEZ-LEGAZ

Let f: SN, X...x Sy, — X1 X ... x X, be the mapping defined by

fl@d,...,a™) = (fila),..., fm(@™)).

Since f is continuous, the sets f~1(CF) are closed for alli € Ny, k=1,... ,m. For
any (Ap,...,Am) € 2V \ {0}) x ... x (2"~ \ {0}), we have

SA1 X oo X SAm C f_l(f(SAl X ... X SAm))
= 7 (fu(Sa)) X - X fm(San))

Cf Iy, x...xT% ) Cf‘l(ﬁ U Cf‘)

k=11i€Ag
- U e

i=1i€Ar

whence, by Lemma 1,

f‘1<ﬁ N Cf) = ﬁ M £71(CF) #0.

k=11i€A; k=14i€A,,
Therefore, (Nr—; Nien, CF # 0 i

The preceding lemma states that a sufficient condition for the intersection of
- . .1 k
the closed sets C¥ to be nonempty is the existence of families {T' Alozacn, sat-
isfying certain properties. In fact, this is also a necessary condition, since, when
(1, Zm) € Nie1MNien, CF, one can define T%, = {7y} for A € 27\ {0},
k=1,...,m.

LEMMA 4. The statement of Lemma 3 remains valid if the Ni’s are arbi-
trary nonempty (possibly infinite) sets and the families {T'%} are indezed by the
nonempty finite subsets of Ny, under the additional assumption that there exists
ke {1,...,m} and i € Ny such that C¥ is compact.

PROOF. By Lemma 3, the family {CF},_, . .cn, has the finite intersection
property whence, as some CF is compact, it has a nonempty intersection. ]

As a particular case of Lemma 4, we obtain the following infinite dimensional
version of Lemma 1; for m = 1, it reduces to Ky Fan’s generalization [5] of the

Knaster-Kuratowski-Mazurkiewicz theorem:

COROLLARY 5. For k = 1,...,m let X; be an arbitrary set in o Hausdorff
topological vector space Yy and let Fy, : X — 2¥ be a mapping taking closed values



(GENERALIZATION OF A FIXED POINT THEOREM 281

in the product space Y = Y7 x ... x Yy, such that the following conditions are
satisfied:

(1) If, for each k=1,... ,m, Ny is a nonempty finite subset of Xy, then

m
coNi1 X...xcoNy, C ﬂ U Fk(m’“).
k=1zkeN;
(ii) There exists k € {1,... ,m} and z* € Xj such that Fy(z*) is compact.
Then

ﬁ () F*)#0.

k=1zkeX,;

A more general version of Corollary 5 can be easily obtained by adapting the
proof of Lemma 1 in [3], replacing the assumption that the mappings F}, are closed-
valued and that one of them has a compact value by the following weaker hypothe-
ses:

(i) For each k = 1,... ,m and every z* € X, the intersection of Fj(z*) with
any product of finite dimensional subspaces is closed.

(ii) If, for each k= 1,... ,m, Dy is a finite dimensional subspace of Yy, then
m m
N [ FEHNDix...xDp)=() [\ Fe=?)n(D1x...x Dy).
k=1z*ke XDy k=1zFeXyxNDy '

(iii) There exists k € {1,... ,m} and z* € X such that Fi(z*) is compact.

Since we shall not use this stronger version of Corollary 5, we omit the proof.

Corollary 5 also follows from Theorem 1 in Lassonde and Schenkel [10], which
deals with the case where each Y} is a convex space (that is, a convex set in
a vector space, supplied with any topology that induces the Euclidean topology on
the convex hulls of its finite subsets).

All results we shall present in the subsequent sections are based on Lemma 4.
The abstract setting in which this lemma finds its applicability is that of H-spaces,
as defined by Bardaro and Ceppitelli [1]:

DEFINITIONS. An H-space is a pair (X, {T a}) consisting of a topological space
X and a family {T'a} of nonempty finite contractible subsets of X, indexed by the
finite subsets of X, such that A C B implies I'y C I'g. A set D C X is called
H-convez if, for every nonempty finite A C D, 'y C D.
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We observe that, for any H-space (X,{I4}), the pair (X,C), where C is the
family of all H-convex subsets of X, is an aligned space in the sense of Jamison-
Waldner [9], i.e., the following properties hold:

1. ® and X are H-convex.
2. An arbitrary intersection of H-convex sets is H-convex.
3. The union of any family of H-convex sets totally ordered by inclusion is

H-convex.

In particular, by 1. and 2., for any set C C X there exists a smallest H-convex
set containing C' (namely, the intersection of all H-convex sets containing it), which
will be called the H-convez hull of C; we shall denote it by cogC. The notion of
alignment is important in the study of abstract convexity [9].

The main example of H-space corresponds to the case when X is a convex subset
of a Hausdorff topological vector space and, for every nonempty finite A C X,T'4 is
the convex hull of A. Then the notion of H-convexity reduces to the usual convexity.
All results we shall give in the following sections are new, even for this particular
case of H-spaces. Although their main interest lies in their interpretation in this
more restricted setting, we prefer to present them in the abstract framework of
H-spaces, since neither the statements nor the proofs are more complicated at this
level of generality.

3. A generalization of Fan-Browder’s fixed point theorem

Throughout this section, we shall denote by (X, {T'%}), k= 1,...,m, an H-
space for which X, is nonempty and compact and by X the product X; X ... x X,,.
Based on Lemma 4, we shall first establish a generalization of Fan-Browder’s fixed

point theorem:

THEOREM 6. Fork =1,...,m let Ty, : X — 2%* be such that, for each z* €
Xi, T; '(z*) is open in X. If for each © € X there egists k = k(z) € {1,... ,m}
for which Ty(x) # 0, then there ezists T = (T*,... ,T™) € X andk € {1,... ,m}
such that T € coy Ty (7).

PROOF. For each k, let Fj, : Xz — 2% be the mapping defined by Fj(z*) =
X\ T;*(z*). Clearly, Fj is compact-valued. We have

ﬁ N Fk(lk)=X\6 U 7765 =0,

k=1zkeX, k=1zkecX;
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since any x € X has Ty(x) # 0 for some k. Therefore, by Lemma, 4, there exist
nonempty finite subsets Ny C Xi, k=1,...,m, such that

Ty, X...xTIT% ¢ F] U Fe=).

k=1 gkecNy

Take

m
T=(@...,.8") €Tk, x---xTR \[) |J Fulz").
k=1gkeN,;
For some k € {1,...,m} we have T ¢ Fi(z*) for all ¥ € Ny or, equivalently,
Ny C Ti(%). Hence, we obtain

z* € F?Vk C COHTk(T).

O

Fan-Browder’s fixed point theorem [5, 4] corresponds to the particular case

m = 1 in the preceding theorem, when X; is a compact convex subset of s Hausdorff
topological vector space and I'} is the convex hull of A. From Theorem 6 one
easily obtains the following fixed point result, which is also a generalization of

Fan-Browder’s.

COROLLARY 7. Let T : X — 2% be such that, for each x € X, the sets
{v* € X, | (zF,4%) e T(2)}, k= 1,... ,m, are H-convex (or empty) and at least
one of them is nonempty and for each k = 1,... ,m and y* € Xy the set {zeX|
(z*,y*%) € T(z)} is open in X. Then T has a fized point.

PROOF. The mappings Ty : X — 2%* defined by Ti(z) = {y* € X, | (zi,y’“)
€ T(z)} satisfy the hypotheses of Theorem 6, whence there exist 7 = (z*, ... ,T™)
€ X and k € {1,... ,m} such that % € cogTy(Z) = Tk(Z). But this means that
(EE,T") € T(Z), i.e., that Z is a fixed point of T O

In the case when the X)’s are compact convex subsets of Hausdorff topological
vector spaces and I‘ﬁ denotes the convex hull of A, the mapping T satisfies the
assumptions of Corollary 7 if, for each z € X, the image T(z) is multiconvex
(in the sense of [11], i.e., its sections in each component are convex; see also [2])
and contains some point differing from z in at most one component and, for each
k€ {l,...,m} and each y* € X, the set {(z,5¥) € X x Xz | (. y*) € T(z)} is
open in X. :

From Theorem 6, we get the following generalization of Lemma 4 in [5]:
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COROLLARY 8. Let A C Xi x X, k= 1,...,m, be such that the following
conditions are satisfied:
(i) For each k = 1,...,m and y* € Xi, the set {z € X | (y*,2) € A} is
closed in X.
(ii) For anyz = (z',...,2™) € X and eachk=1,...,m, (z*,z) € Ay.
(iii) For any z € X, the sets {y* € X | (v*,z) € Ak}, k = 1,...,m, are
H-convez (or empty).

Then there exists T € X such that Xy x {T} C Ay, for each k=1,... ,m.

PROOF. For each k define T}, : X — 2%* by Ty (z) = {y* € X | (%, ) & Ax}.
By assumptions (iii} and (i), the images Ti(z), x € X, are H-convex (or empty)
and the inverse images T}, '(y*), y* € Xy, are open in X. On the other hand, by
(ii), we have z* & Ty (z) for every z = (z1,... ,2™) € X and each k € {1,... ,m}.
Therefore, by Theorem 6, there exists T € X such that T, (Z) = @ for each k. But
the emptiness of T;(ZT) is clearly equivalent to the inclusion Xj % {Z} C Ag. |

Assumption (i) in the preceding corollary holds when the sets Ay, are closed in
Xk x X.

COROLLARY 9. Let A C X x X be such that the following conditions are
satisfied:
(i) For eachk =1,...,m and y* € Xk, the set {T € X | (wE, y*,z) € A} is
closed in X.
(ii} For any z € X, (z,z) € A.
(ili) For any x € X, the sets {y* € Xy | (m”e,yk,z) g A}, k=1,...,m, are
H-convez (or empty). .

Then there exists T € X such that

(g({fﬁ} x Xk)) x {z} C A.

PROOF. For each k, let A, = {(y*,z) € X x X | («F,y*,z) € A}. These
sets satisfy the hypotheses of Corollary 8, whence there exists T € X such that
X, x {Z} C Ay for each k. But this is equivalent to (i, ({Z*} x Xx)) x {Z}
A O

Alternatively, Corollary 9 could have been proved from Corollary 7, using the
mapping T : X — 2% defined by T(z) = {y € X | (y,z) & A}.
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Assumption (i) in Corollary 9 is satisfied when A is closed, while condition (iii)
holds when the sets {y € X | (y,z) € A}, z € X, are multiconvex (in the case of
the Xi’s being compact convex subsets of Hausdorff topological vector spaces and
the families of contractible subsets being the convex polytopes).

We observe that the set | J;—, ({ZF} x X)) appearing in the conclusion of Corol-
lary 9 consists of those points in X which differ from 7 in at most one component.

4. Ky Fan type inequalities

Throughout this section, as in the preceding one, (Xx, {T%}),k=1,... ,m, will
denote an H-space, with X being nonempty and compact; X will represent the
product X; X ... x X,,,. A function ¢ : X} — R will be called H-quasiconcave if
the sets g~1([A, +00)) are H-convex, and H-quasiconvez if —g is H-quasiconcave.
Our first result generalizes Lemma 1.3 in [12], which is in turn a generalization of
the famous Ky Fan minimax inequality [7]:

THEOREM 10. Let fr : X X X = R, Gx : X — 2%k k=1,...,m, be such
that, for every z* € X andz € X,
(i) fr(-,z*) is lower semicontinuous,
(i) fx(z,-) is H-quasiconcave,
(iii) Gy'(z*) is open in X, and
(iv) Gi(z) is H-convex.

Then there exists T € X such that

sup  fr(Z,¥*) < sup f(z,z*)
y*EG(T) kG ()

foreachk=1,...,m.

PROOF. For each k, let px = SUp,keg,(q) fu(2,2¥) and Ay = {(v*,2) €
X; x X | fu(z,v*) < ux or y* € Gi(z)}. The sets A satisfy the conditions
of Corollary 8, whence there exists T € X such that Xy x {T} C A for each k. But
it is easy to check that the inclusion X} x {Z} C Ay is equivalent to the inequality

sup fk(fi yk) < sup fk(xi mk:)'
YR €EGL(T) zkeGr(z)
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The assumptions of the preceding theorem can be replaced by the following

weaker conditions:

(i) For each k = 1,... ,m and y* € X, the set {z € X | fi(z,¥*) < ux} U
(X \ G5'(¥*)) (with puy as in the proof of Theorem 10) is closed in X.

(ii) For any z € X, the sets {y* € Gi(z) | fe(z,¥*) > ue}, k=1,... ,m, are
H-convex (or empty).

Indeed, these conditions are equivalent to (i) and (iii) of Corollary 8, respectively,
for the sets Ay defined in the preceding proof.

Taking Gi(z) = X§, k=1,... ,m, in Theorem 10, one obtains a version of Ky
Fan’s minimax inequality with several functions; the classical inequality corresponds
to the case when m = 1, X3 is a compact convex subset of a Hausdorff topological
vector space and I'} is the convex hull of A.

We derived Theorem 10 from Corollary 8 and the latter from Theorem 6. In the
converse direction, Theorem 6 can be easily deduced from Theorem 10 applied to
the functions fy : X x X; — R defined by fi(z,y*) = 1 if y* € Tx(z), 0 otherwise,
and to the mappings Gy : X — 2%k given by Gi(z) = X;.

COROLLARY 11. Let f : X x X — R and G : X — 2% be such that, for each
k=1,...,m,

(i) the function z € X — f(=z, F, y*) € R is lower semicontinuous for any
y* € Xi,
(ii} f(z, :L'E, -) is H-quasiconcave for any z € X,
(ii) {z e X | (:1:75, y*) € G(z)} is open in X for any y* € Xy, and
(iv) {y* € X | (mz,yk) € G(z)} is H-conver for any x € X.

Then there exists T € X such that

sup sup I (=, fz,yk) < sup f(z,z).
1<k<m (@t yh)ec(@) #€G()

ProOOF. Apply Theorem 10 to the functions fi : X x X — R defined by
fi(z,y*) = f(z, J:E, y*) and the mappings Gi : X — 2%k given by Gi(z) = {¢* €
X | (zF,4*) € G(z)}, observing that, for each k and z = (z1,...,2™) € X,
one has fi(z,z*) = f(z,z) and that the conditions z*¥ € Gx(z) are equivalent to
z € G(z). O
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According to the observation we made after Theorem 10, the assumptions on
f and G in the preceding corollary can be replaced by the following weaker condi-
tions:
(i) For each k = 1,...,m and y* € X, the set {z € X | f(z,z*,¢*) <
SUP, () f(2, %) or (z*,y*) & G(z)} is closed in X.
(ii) For any z € X, the sets

{yk S Xk | (IE, yk) € G(x)a fk(w’yk) > Sglé’)f(x, :E)}a

k=1,...,m, are H-convex (or empty).

Taking G(z) = X in Corollary 11, for the case when the X}’s are compact con-
vex subsets of Hausdorff topological vector spaces and 1'"}1 denotes the convex hull
of A, one obtains a version of Ky Fan’s minimax inequality valid for the case when
the usual quasiconcavity assumption on the functions f(z,-) is relaxed to multi-
quasiconcavity (i.e., quasiconcavity in each component [2]), which can be expressed
in the following way:
sup f(%,y) < sup f(z,z),

T zeX

Y~E
the relation y ~ Z meaning that y differs from Z in at most one component. Again
when m = 1, this coincides with the usual Ky Fan inequality.

An alternative proof of Corollary 11 can be obtained from Corollary 9 applied
to A= {(y,z) € XxX | f(2,y) < sUP,eq(s) f(,2) or y € G(x)}. We have already
observed that Corollary 9 is an immediate consequence of Corollary 7. Conversely,
Corollary 7 can be easily derived from Corollary 11, by applying it to the function
f: X x X — Rdefined by f(z,y) =1ify € T(z), 0if y € T(x) and to the mapping
G: X — 2% given by G(z) = X.

COROLLARY 12. Let g : X X Xy — R, k = 1,... ,m, be continuous and
such that gr(z,-) is H-quasiconvex for every x € X. Then there erists T =
@,...,Z™) € X such that gr(T,T*) = min ke x, gr(T,y*) for eack k=1,...,m.

PRrooOF. This follows from Theorem 10 applied to the functions f; : X x Xz —» R
defined by fi(z,y*) = gr(x, z¥) — gk(z,y*) and the mappings Gy : X — 2%* given
by Gx(z) = X, observing that sup e x, fx(Z,¥*) = g&(Z, Z*) — inf e x, gi(, ¥*)
and fi(z,z%) =0 for any z = (z!,... ,2™) € X. O

When one takes m = 1, X; a compact convex subset of a Hausdorfl topological
vector space and I'}, as the convex hull of A in Corollary 12, it reduces to Corollary
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1in [7]. On the other hand, Nash’s Theorem on the existence of equilibrium points
in n-person games [13] is also an immediate consequence of Corollary 12. Indeed, if
the X}’s are compact convex subsets of Hausdorff topological vector spaces and fy, :
X =R, k=1,... ,m, are continuous multiquasiconcave functions, then applying
Corollary 12 to the functions gi : X x X — R defined by gi(z, %) = — f(z*, y*) one
gets the existence of T = (Z*,... ,T™) € X such that f(Z) = maxykex, fk(TE, y*)
foreach k=1,...,m.

COROLLARY 13. Let g : X x X — R be continuous and such that, for each
k=1,...,m, the function g(x,z*,-) is H-quasiconvez for any x € X. Then there
ezists T € X such that g(Z,Z) = min,kcx, 9(7, Z*,y*) for each k=1,... ,m.

PROOF. For each k define gy : X x Xy — R by gx(z,3*) = g(z',wg,yk).
These functions satisfy the assumptions of Corollary 12, whence there exists T =
(@',...,2™) € X such that

_ — _k . = .k : = =k , k
T,%T) = gi(Z,Z°) = min z = min g(%,%",
9(Z,T) = (%, ") i gx(7,y") Juin 9(z,7",y")

for each k. O

The preceding corollary could have been deduced alternatively from Corollary
11, applied to f : X x X — R defined by f(z,y) = g9(z,z) —g(z,y) and G : X — 2%
given by G(z) = X.

The conclusion in Corollary 13 can be expressed as ¢(Z,Z) = miny.z g(Z, y),
y ~ T denoting that y differs from T in at most one component. This is weaker
than the conclusion of Corollary 1 in [7], where y € X appears instead of y ~ Z.
However, the quasiconvexity assumption on the functions g(z, -) in the latter result
has been relaxed to a weak form of multiquasiconvexity in Corollary 1.3 (leaving
aside the more abstract framework to which it belongs).

5. A geometric theorem on sets with convex sections

In this section, (Xk,,-,{l‘fff}), i=1,...,m (nk>2),k=1,... ,m, denote
H-spaces for which X ; is nonempty and compact, X; = Xia X ..o X Xg s
kE=1,...,m,and X = X; X ... Xx X,,. Our first result generalizes Theorem 7 in
(7] (which corresponds to the particular case when m = 1, each X ; is a compact
convex subset of a Hausdorff topological vector space and I‘i{i is the convex hull
of A).
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THEOREM 14. Let fy;: X - R,i=1,... ,nk, k=1,... ,m, be such that
(i) the function Xz X Xe3 3 (zﬁ,zk'?) — fk,i(mE, :1:’“’?, ) € R is lower
semicontinuous for any =% € Xk,i, and
(ii) the function Xp; > zht 5 fri(2F, 28 28 € R is H-quasiconcave for
any (z*,zF*) € X3 x Xz
Lettp; €R,i=1,... ,ng, k=1,... ,m. If for each

= ((z¥...,2"™),..., (@™!,... ,2™"™)) € X,

there ezists k = k(z) € {1,... ,m} such that for everyi = 1,... ,ng, there is a point
7% € Xi; for which fi;(z*,z®, §%%) > ty;, then there ezistk € {1,... ,m} and
T € X such that ff (%) > 15, i=1,... ,ng.

PROOF. For each k and i € {1,... ,n%}, define fx : X x X — R by

fu(z,y*) = lglgl {Fua(@®, e, y%) — ty.3)

for z = ((z¥1,... ,zb™),... ,(@™!,... ,2™"™)) € X and y* = (p*1,... ,yFm*) €
X}. These functions satisfy the assumptions of Theorem 10, whence there exists
T € X such that

sup fi(%,y*) < sup fr(x,z¥),
y"EXk zeX

k=1,...,m. On the other hand, for k = k(Z) we have

sup (@, 4F) > f(@,5) > 0,

yreXy
with % = (7%1,... ,ﬂz’"F) as in the statement. Combining these results, we get
the existence of T = (Z',...,Z™) € X such that fx(Z,Z*) > 0. But, according to

the definition of the fi’s, this is equivalent to the set of inequalities f5 (%) > 7,
t=1,..., ng. O

As a consequence of the preceding theorem, we next obtain a generalization of
an intersection theorem for sets with convex sections, due to Ky Fan [5]:

THEOREM 15. Let Ex; C X, i=1,...,m, be such tha,t for any z** € Xk,i,
the section Ey;(z*?) = {(=* :v’“) € Xz x X, | (zF, %%, ghid) € E;”} is open
in Xz x X7 and, for any (:1: z* ’) € X3 X Xk +, the section E (:1: .7:’“) =
{zF¢ € Xp; | (:1: ,zht, zk%) € Ey;} is H-convex (or empty). If for each T =
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((zb1,... 2™, (g™, .. ,g™"m)) € X, there exists k = k(z) € {1,... ,m}
such that E,;,}(a:’“,a:k’i) #0,i=1,...,n, then

m N

U M) Bri#0.

k=11i=1

PROOF. For each k and ¢ € {1,... ,n%} let fx; : X — R be the characteristic
function of Ey;, i.e., fri(x) = 1if z € Ey;, 0if € Ey;. Letting tx; = 0, the
assumptions of Theorem 14 are satisfied, whence there exists k € {1,... ,m} and
T € X such that fg,(%) >0, i=1,...,nz. But, in view of the definition of the
fr,i', the inequality fg ;(Z) > 0 is equivalent to T € E% ;- Therefore, we have

% m ng
ze () B c U Ers
i=1 k=1i=1

0

The above mentioned theorem of Ky Fan corresponds to the particular case of

the preceding theorem when m = 1, each X;; is a Hausdorff topological vector

space and I“l‘l’i is the convex hull of A. In this particular setting, Ky Fan [6, 7]

observed that Theorems 14 and 15 are equivalent. This is also true in our more

general framework, since Theorem 14 can be easily derived from Theorem 15 by
considering the sets Ey; = {z € X | fx,i(2) > tr,i}-
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